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1. INTRODUCTION

This report presents the formulation and computational implementation of the LaRC
ply-based failure criteria for laminated composite materials, and the implementation
of a continuum damage model that is able to predict the onset and propagation of
ply failure mechanisms as well as the final failure load of composite structures.

The LaRC failure criteria is implemented by means of a UVARM ABAQUSr subrou-
tine, whereas the continuum damage model is implemented in both a UMAT subroutine
for implicit analysis and in a VUMAT subroutine for explicit analysis.

This report explains in detail the definition of the required material properties and
initial conditions in the ABAQUSr input file. In addition, examples of application
of the subroutines developed are presented at the end of each section of the report.

The papers that were published in the context of the project activities are pre-
sented in Annexes B and C.
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2. UVARM SUBROUTINE

2.1 Overview

This section presents a reference manual for the use of an ABAQUSr user subroutine
UVARM [1] with the implementation of the plane-stress LaRC failure criteria [2]-[5]. The
basic equations of the LaRC failure criteria and the details of its implementation are
presented. An example of the use of the subroutine in the simulation of an open-hole
carbon-epoxy quasi-isotropic laminate loaded in tension is presented.

2.2 In-situ strengths

The in-situ effect, originally detected in Parvizi’s tensile tests of cross-ply glass fiber
reinforced plastics [6], is characterized by higher transverse tensile and shear strengths
of a ply when it is constrained by plies with different fiber orientations in a laminate,
compared with the strength of the same ply in an unidirectional laminate. The in-
situ strength depends on the number of plies clustered together, and on the fiber
orientation of the constraining plies. The model proposed for the calculation of the
in-situ strengths uses the simplifying assumption that the fiber orientation of the
constraining layers does not affect the value of the in-situ strength.

The in-situ effect is illustrated in Figure 2-1, where the relation between the in-
situ transverse tensile strength experimentally measured and the total number of 90◦

plies clustered together (2n) is represented.

It is clear that accurate in-situ strengths are necessary for any stress-based failure
criterion for matrix cracking in constrained plies. Therefore, the user should calculate
the in-situ strengths that are required for the LaRC failure criteria [2]-[5]. The in-situ
strengths are an input for the ABAQUSr UVARM subroutine.

The closed-form solutions to predict the in-situ strengths previously proposed can
be used [2]. The tensile transverse in-situ strengths are given by [2]:

For a thin embedded ply: YT =

√
8G2+

πtΛo
22

(2.1)

For a thin outer ply: YT = 1.79

√
G2+

πtΛo
22

(2.2)

For a thick ply: YT = 1.12
√

2YUD
T (2.3)

13



Figure 2-1 In-situ effect in laminated composites (after Dvorak [7]).

where YUD
T is the tensile transverse strength measured in an unidirectional test spec-

imen, t is the ply thickness, G2+ is the mode I fracture toughness, and Λ◦22 is defined
as:

Λ◦22 = 2

(
1

E2

− ν2
21

E1

)
(2.4)

The in-situ shear strengths are obtained as [2]:

SL =

√
(1 + βφG2

12)
1/2 − 1

3βG12

(2.5)

where β is the shear response factor, and the parameter φ is defined according to the
configuration of the ply:

For a thick ply: φ =
12

(
SUD

L

)2

G12

+ 18β
(
SUD

L

)4

For a thin ply: φ =
48G6

πt

For an outer ply: φ =
24G6

πt
(2.6)

where SUD
L is the shear strength measured in an unidirectional test specimen, and G6

is the mode II fracture toughness.
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2.3 Failure criteria

2.3.1 Transverse fracture

Tension

The LaRC criterion to predict failure under transverse tension (σ22 ≥ 0) and in-plane
shear is defined as:

(1− g)
σ22

YT

+ g

(
σ22

YT

)2

+

(
σ12

SL

)2

− 1 ≤ 0

(1− g)
σ

(m)
22

YT

+ g

(
σ

(m)
22

YT

)2

+

(
σ

(m)
12

SL

)2

− 1 ≤ 0,

σ11 < 0, |σ11| < XC/2 (2.7)

where g = G2+

G6
.

The stresses σ
(m)
ij are calculated in a frame aligned with the fiber direction accord-

ing to the following expressions:

σ
(m)
11 = σ11 cos2 ϕ + σ22 sin2 ϕ + 2 |σ12| sin ϕ cos ϕ

σ
(m)
22 = σ11 sin2 ϕ + σ22 cos2 ϕ− 2 |σ12| sin ϕ cos ϕ

σ
(m)
12 = −σ11 sin ϕ cos ϕ + σ22 sin ϕ cos ϕ+

+ |σ12|
(
cos2 ϕ− sin2 ϕ

)
(2.8)

where the misalignment angle ϕ is defined as:

ϕ =
|σ12|+ (G12 − XC) ϕc

G12 + σ11 − σ22

(2.9)

ϕc = tan−1




1−
√

1− 4$
(

SL

XC

)

2$


 (2.10)

with $ = SL

XC
+ ηL.
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Compression

The failure criteria used to predict fracture under transverse compression (σ22 < 0)
and in-plane shear is defined as:

(
τT
e

ST

)2

+

(
τL
e

SL

)2

− 1 ≤ 0, σ11 ≥ −YC (2.11)

(
τ

(m)T
e

ST

)2

+

(
τ

(m)L
e

SL

)2

− 1 ≤ 0, σ11 < −YC (2.12)

The effective shear stresses in the fracture plane are defined as:

τT
e =

〈∣∣τT
∣∣ + ηT σn cos θ

〉
(2.13)

τL
e =

〈∣∣τL
∣∣ + ηLσn sin θ

〉
(2.14)

with θ = tan−1
(

−|σ12|
σ22 sin α

)
. 〈x〉 is the McAuley operator defined as 〈x〉 := 1

2
(x + |x|).

The components of the stress tensor on the fracture plane are given by:





σn = σ22 cos2 α
τT = −σ22 sin α cos α
τL = σ12 cos α

(2.15)

The terms τmT
e and τmL

e are calculated from equations (2.13)-(2.14) using the
relevant components of the stress tensor established in a frame representing the fibre
misalignment. The fracture plane is defined by the angle α. The determination of α
is performed numerically maximizing equations (2.11) and (2.12).

The coefficients of transverse and longitudinal influence, ηT and ηL respectively,
can be obtained as:

ηT =
−1

tan 2α0

(2.16)

ηL = − SL cos 2α0

YC cos2 α0

(2.17)

where α0 is the fracture angle under pure transverse compression (α0 ≈ 53◦).
In the absence of test data the transverse shear strength can be estimated as:

ST = YC cos α0

(
sin α0 +

cos α0

tan 2α0

)
(2.18)
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2.3.2 Longitudinal failure

Tension

The failure criterion used to predict fiber fracture under longitudinal tension (σ11 ≥ 0)
is defined as:

σ11

XT

− 1 ≤ 0 (2.19)

Compression

The failure criterion used to predict fiber fracture under longitudinal compression
(σ11 < 0) and in-plane shear (fiber kinking) is given as:

〈∣∣∣σ(m)
12

∣∣∣ + ηLσ
(m)
22

SL

〉
− 1 ≤ 0, σ

(m)
22 < 0

(1− g)
σ

(m)
22

YT

+ g

(
σ

(m)
22

YT

)2

+

(
σ

(m)
12

SL

)2

− 1 ≤ 0,

σ
(m)
22 ≥ 0, |σ11| ≥ XC/2 (2.20)

Based on the equations outlined above, the subroutine calculates the following
parameters that can be used for post-processing:

Table 2.1 Parameters calculated by the subroutine.
UVARM(1) Failure index for transverse tensile failure
UVARM(2) Failure index for transverse compressive failure
UVARM(3) Failure index for longitudinal tensile failure
UVARM(4) Failure index for longitudinal compressive failure

2.4 Input into Abaqus standard

The user must create a file with the name jobname.mt where the material properties
are defined. The file must have the same name as the .inp file that defines the model.
The file jobname.mt must be placed in the same directory where the ABAQUSr input
file is located.

The format of the file jobname.mt is the shown in Table 3.1.
The symbol ∗∗ means that the corresponding lines can be used to write comments.

The name of the material (line 4) must be the same as the one given in the ABAQUSr

17



Table 2.2 Format required for the jobname.mt file.
Line Column

1 2 3 4 5 6 7 8
1 ∗∗
2 3
3 ∗∗
4 Material

5 ∗∗
6 E1 E2 E3 υ21 υ31 υ32

7 ∗∗
8 G12 G23 G31 XT XC YT YC Sud

L

9 ∗∗
10 α0 β g SL

jobname.inp file and must be written in capitals. Lines 3 to 10 can be repeated
for the definition of other materials. The following is an example of a file with the
definition of three materials.

18



** LaRC03 failure criteria: use 3 for LaRC03 and 4 for LaRC04
3

** MAT. #1: IM7-8552-thin: thin embedded ply
IM7-8552-THIN

** E1 , E2 , E3 , nu21 , nu31 , nu32
171420., 9080., 9080., 0.017, 0.017, 0.4

** G12 , G23 , G31 , XT , XC , YT , YC , SL
5290., 3242.9, 5290., 2323.5, 1200.1, 160.2, 199.8, 92.3

** alphao, beta, g , SL_IS
53. , 0. , 0.5, 130.2

** MAT. #2: IM7-8552-thin: thin outer ply
IM7-8552-THIN-OUTER

** E1 , E2 , E3 , nu21 , nu31 , nu32
171420., 9080., 9080., 0.017, 0.017, 0.4

** G12 , G23 , G31 , XT , XC , YT , YC , SL
5290., 3242.9, 5290., 2323.5, 1200.1, 101.4, 199.8, 92.3

** alphao, beta, g , SL_IS
53. , 0. , 0.5, 107.

** MAT. #3: IM7-8552-thin-2t: embedded ply with t=2*ply thickness
IM7-8552-THIN-2T

** E1 , E2 , E3 , nu21 , nu31 , nu32
171420., 9080., 9080., 0.017, 0.017, 0.4

** G12 , G23 , G31 , XT , XC , YT , YC , SL
5290., 3242.9, 5290., 2323.5, 1200.1, 113.3, 199.8, 92.3

** alphao, beta, g , SL_IS
53. , 0. , 0.5, 106.9

The user must define consistent material properties in the jobname.inp file, and
define four user output variables following the example shown below:

*MATERIAL, NAME=IM7-8552-thin-outer
*ELASTIC, TYPE=LAMINA
171420., 9080., 0.32, 5290., 5290., 3242.9

*USER OUTPUT VARIABLES
4,

2.5 Example

An ABAQUSr model with an example of the use of the UVARM subroutine in
the prediction of first ply failure of a quasi-isotropic Hexcel IM7-8552 [90/0/± 45]3s

CFRP laminate with a central hole and loaded in tension can be downloaded from
the following URL:

www.fe.up.pt/~pcamanho/oht3_03.inp

www.fe.up.pt/~pcamanho/model_oht3.inp

www.fe.up.pt/~pcamanho/oht3_03.mt

19



The model uses ABAQUSr S4 shell elements. The specimen is 3mm thick, 150mm
long, 36mm wide and has a central hole with a diameter of 6mm.

The material properties used are shown in Tables 3.4-3.6.

Table 2.3 Ply elastic properties for IM7-8552.

Property Value
E1 (GPa) 171.42
E2 (GPa) 9.08
G12 (GPa) 5.29
υ12 0.32

Table 2.4 Ply strengths for IM7-8552.

Property Value (MPa)
XT 2326.2
XC 1200.1
Y ud

T 62.3
YC 199.8
Sud

L 92.3

Table 2.5 Calculated in-situ strengths for IM7-8552 (MPa).

Ply configuration YT SL

Thin embedded ply 160.2 130.2
Thin outer ply 101.4 107.0

Figures 2-2 and 2-3 show respectively the field variables UVARM(1) and UVARM(3)

of the 0◦ ply for an applied end displacement of 0.5mm.

20



(Ave. Crit.: 75%)
fraction = -0.875000, Layer = 2
UVARM1

-2.431e-03
+8.750e-03
+1.993e-02
+3.111e-02
+4.229e-02
+5.347e-02
+6.465e-02
+7.583e-02
+8.701e-02

Step: Step-1
Increment      2: Step Time =    1.000
Primary Var: UVARM1
Deformed Var: U   Deformation Scale Factor: +1.000e+00

SPECIMEN OHT3V2
ODB: oht3_03.odb    ABAQUS/STANDARD Version 6.5-2    Tue Feb 06 21:34:57 GMT Standard Time 2007

1

2

3

Figure 2-2 Field variable 1 in a 0◦ ply.

(Ave. Crit.: 75%)
fraction = -0.875000, Layer = 2
UVARM3

+2.849e-02
+1.157e-01
+2.028e-01
+2.900e-01
+3.772e-01
+4.644e-01
+5.516e-01
+6.387e-01
+7.259e-01

Step: Step-1
Increment      2: Step Time =    1.000
Primary Var: UVARM3
Deformed Var: U   Deformation Scale Factor: +1.000e+00

SPECIMEN OHT3V2
ODB: oht3_03.odb    ABAQUS/STANDARD Version 6.5-2    Tue Feb 06 21:34:57 GMT Standard Time 2007

1

2

3

Figure 2-3 Field variable 3 in a 0◦ ply.
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3. UMAT SUBROUTINE

3.1 Overview

The second part of this report is a reference manual for the use of an ABAQUSr

user subroutine UMAT [1] with the implementation of a continuum damage model for
laminated composites.

The plane-stress continuum damage model implemented in ABAQUSr is de-
scribed in detail in references [8]-[11]. The continuum damage model is defined in
the framework of the thermodynamics of irreversible processes. Generally speaking,
the formulation of the continuum damage models starts by the definition of a poten-
tial (for example, the complementary free energy per unit volume) as a function of the
damage variables. The potential is the basis for establishing the relation between the
stress and the strain tensors. For the complete definition of the constitutive models
it is also necessary to define the damage activation functions, i.e. the conditions that
lead to the onset of inelastic response, and the damage evolution functions.

The present continuum damage for ABAQUSr predicts the onset and accumu-
lation of intralaminar damage mechanisms (matrix cracking and fiber fracture) in
laminated composites as well as final structural collapse by the propagation of a
macro-crack. The macro-crack is represented by a line of localized shell or continuum
elements, i.e., elements where the constitutive tangent tensor is not positive definite.

This report presents the basic equations required for the definition of the material
properties and it explains how to define the model in ABAQUSr standard. An
example of the simulation of fracture of an open-hole carbon-epoxy quasi-isotropic
laminate loaded in tension is also described.

The full details of the development and validation of the model are presented in
the papers shown in Appendix B and Appendix C:

• P.P. Camanho, P. Maimı́, C.G. Dávila, Prediction of size effects in notched lam-
inates using continuum damage mechanics, Composites Science and Tech-
nology, 67, 2715-2727, 2007. This paper describes the application of the model
in the prediction of size effects in notched composites using shell elements.

• H. Koerber, P.P. Camanho, Simulation of progressive damage in bolted compos-
ite joints, Proceedings of the 13th European Conference on Composite
Materials (ECCM-13), Stockholm, Sweden, 2008. This paper presents the
application of the model in the prediction of the mechanical response of CFRP
bolted joints using solid elements. In addition, the paper compares the model
proposed here with the ABAQUSr built-in damage model [1].
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3.2 Input into Abaqus standard

3.2.1 Shell elements

Material properties

The material properties must be defined by the user in the jobname.inp file according
to the following example.

**

** MATERIAL #1: thin embedded ply

**

** E1, E2, G12, v12, alpha1,alpha2, XT, XPO

** XC, YT, YC, ALPHA0, SL , SLud , GIC_F1, GIC_FE

** GIC_M, GIIC_M, GIC_FC, GIIC_M-, beta1, beta2 , DM, Eta_viscous

**

*MATERIAL,NAME=IM7-8552-thin

*USER MATERIAL, CONSTANTS=24, UNSYMM

**

171420., 9080. , 5290., 0.32 , -5.5E-6, 25.8E-6, 2323.5, 232.3,

1200.1, 160.2 , 199.8 , 0.925, 130.2, 92.3, 31.5, 50.0,

0.2774, 0.7879, 106.3 , 1.3092, 0.000, 0.005, 0.0, 0.000

**

*DENSITY

1590E-6

**

*DEPVAR

15

The material properties defined after the *USER MATERIAL command are shown in
Table 3.1.

Table 3.1 Material properties in the jobname.inp file.
Line Column

1 2 3 4 5 6 7 8
1 E1 E2 G12 υ12 α11 α22 XT XPO

2 XC YT YC α0 SL Sud
L GL

1+ GE
1+

3 G2+ G6 G1− G2− β11 β22 ∆M ηvisc

Most of the properties required are standard ply properties. However, non-
standard material properties are also required. XPO is the transition strength used
for the definition of the damage evolution law for longitudinal tensile failure. GL

1+

and GE
1+ are respectively the fracture energies per unit area related with the linear

and exponential softening laws shown on Figure 3-1.
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Figure 3-1 Damage evolution in longitudinal tension.

The parameter α0 is the fracture angle of a ply under pure transverse compression.
For graphite/epoxy and glass/epoxy materials the fracture angle α0 is typically equal
to 53◦. ηvisc is the parameter used in the viscous regularization procedure used to
mitigate convergence difficulties.

Initial conditions

The model requires the definition of the initial values of the state variables. Therefore,
the jobname.inp file must include the following command:

**

** Initialization of the state variables:

**

** ELSET, rfT, rmT, rfC, rmC , AfC, AmT, AmC, d1, d2, d6,

** dr/dr, gf, gm, FIfX, ALEA

**

*INITIAL CONDITIONS, TYPE=SOLUTION

OUT_PLT, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0

where OUT_PLT represents the group of all elements whose constitutive model is de-
fined by the UMAT subroutine. The state variables are shown in Table 3.2.
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Table 3.2 State variables.
STATEV(1) r1+ Damage threshold function
STATEV(2) r2+ Damage threshold function
STATEV(3) r1− Damage threshold function
STATEV(4) r2− Damage threshold function
STATEV(5) A1− Adjustment constant
STATEV(6) A2+ Adjustment constant
STATEV(7) A2− Adjustment constant
STATEV(8) d1 Damage variable
STATEV(9) d2 Damage variable
STATEV(10) d6 Damage variable
STATEV(11) ∂rt+1

1+ /∂rt
1+ Derivative required for the viscous regularization

STATEV(12) g1 Energy dissipated
STATEV(13) g2 + g6 Energy dissipated
STATEV(14) φt−1

1± Damage activation functions
STATEV(15) Ran Definition of random properties

The state variables STATEV(1) to STATEV(14) are defined in detail in references
[8]-[11]. STATEV(15) should be equal to one if a random field of material properties is
not required. Setting STATEV(15)=0 creates a random field for the ply longitudinal
strengths. All the variables can be post-processed using ABAQUSr viewer:

*ELEMENT OUTPUT, ELSET=DAMAGE_ELEMS

1, 2, 3, 4

SDV

3.2.2 Continuum elements

Material properties

The material properties must be defined by the user in the jobname.inp file according
to the following example.
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** MATERIAL #1: thin embedded ply

**

** E1 , E2 , G12 , v12 , alpha1, alpha2, XT , XPO,

** XC , YT , YC , ALPHA0 , SL , SLud , GIC_F1, GIC_FE

** GIC_M, GIIC_M, GIC_FC, GIIC_M-, beta1 , beta2 , DM , Eta_viscous

** v23 , thickness

**

*MATERIAL,NAME=IM7-8552-thin

*USER MATERIAL, CONSTANTS=26, UNSYMM

**

171420., 9080. , 5290., 0.32 , -5.5E-6, 25.8E-6, 2323.5, 232.3,

1200.1, 160.2 , 199.8 , 0.925, 130.2, 92.3, 31.5, 50.0,

0.2774, 0.7879, 106.3 , 1.3092, 0.000, 0.005, 0.0, 0.000,

0.52 , 0.125

**

*DENSITY

1590E-6

**

*DEPVAR

15

The material properties defined after the *USER MATERIAL command are shown in
Table 3.3.

Table 3.3 Material properties in the jobname.inp file.
Line Column

1 2 3 4 5 6 7 8
1 E1 E2 G12 υ12 α11 α22 XT XPO

2 XC YT YC α0 SL Sud
L GL

1+ GE
1+

3 G2+ G6 G1− G2− β11 β22 ∆M ηvisc

υ23 t

The parameter t is the ply thickness.

Initial conditions

The model requires the definition of the initial values of the state variables. Therefore,
the jobname.inp file must include the following command:

**

** Initialization of the state variables:

**

** ELSET, rfT, rmT, rfC, rmC , AfC, AmT, AmC, d1, d2, d6,

** dr/dr, gf, gm, FIfX, ALEA

**
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*INITIAL CONDITIONS, TYPE=SOLUTION

OUT_PLT, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0

The state variables are shown in Table 3.2.

3.2.3 Effect of Element Size and Toughness on Degradation Rates

To predict damage propagation, it is necessary to establish rates of material degra-
dation that are energetically consistent. The present damage model relies on damage
evolution laws that take into account the toughness of the material in each damage
mode as well as the volume of material represented by each element integration point
in the model [8]-[11]. However, correct degradation rates can only be achieved when
the finite element mesh is sufficiently refined.

When an element is too large for a given material, it is not possible to achieve
the proper degradation without a snap-back of the constitutive model [8]-[11]. Un-
der these circumstances, the model is designed to reduce the material strengths as
necessary to achieve the correct energy release rates. This approach allows the use of
coarser meshes for damage propagation. However, the mesh in the regions of damage
initiation should be sufficiently refined. In addition, care should be applied to ensure
that the strengths of elements in coarse regions away from the damage areas are not
reduced so much as to cause unrealistic failures. References [8]-[11] provide techniques
to estimate the maximum size of elements in the regions of damage initiation: the
maximum size for the finite element for each damage law M is:

l∗ ≤ 2EMGM

X2
M

, M = 1±, 2±, 6 (3.1)

where EM , GM and XM are the Young modulus, fracture energies and strengths,
respectively. l∗ is the characteristic size of the finite element (ABAQUSr CELENT

parameter).

When the strength of an element is reduced the subroutine writes a warning
message to the modelname.dat file according to the following format:

STRENGTH REDUCTION YT = 101.229471616873 N. ELEMENT = 203

where YT is the adjusted value of the transverse tensile strength.

In addition, the coarse elements whose longitudinal tensile strength and transverse
tensile and compressive strengths were reduced can be visualized using ABAQUSr

viewer. The elements whose longitudinal compressive strength (XC) was reduced have
the state variable STATEV(5) equal to 100. The elements whose transverse tensile and
compressive strengths, YT and YC respectively, were reduced have the state variable
STATEV(6) (YT ) and STATEV(7) (YC) equal to 100.
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3.2.4 Thermal stresses

The constitutive model calculates the residual thermal stresses that result from the
different coefficients of thermal expansion in the longitudinal and transverse direc-
tions. To enable the calculation of the thermal stresses, the user should define in the
jobname.inp file the amplitude of the thermal step as follows:

*AMPLITUDE, NAME=AMPL, DEFINITION=TABULAR

0.,0.,1.,1.

The residual thermal stresses should be calculated in the initial step, as shown in
the following example:

**

** Step 1: thermal step

**

*STEP, INC=10000, UNSYMM=YES

*STATIC

0.5, 1., 1D-7, 1.

*TEMPERATURE,AMPLITUDE=AMPL

GLOBAL, -155.

where GLOBAL represent the group of nodes that belong to the elements whose consti-
tutive model is defined by the UMAT subroutine, and -155 is the difference between
the working and reference temperatures.

The following (mechanical) steps must include the following command:

*TEMPERATURE

GLOBAL, -155.

3.3 Example

An ABAQUSr model with an example of the use of the UMAT subroutine in the
strength prediction of a quasi-isotropic Hexcel IM7-8552 [90/0/±45]3s CFRP laminate
with a central hole and loaded in tension can be downloaded from the following URL:

www.fe.up.pt/~pcamanho/oht3v2.inp

www.fe.up.pt/~pcamanho/model_open_hole_3_dy.inp

www.fe.up.pt/~pcamanho/IM7-8552.inp

The model is composed of ABAQUSr S4 shell elements and it represents a speci-
men that is 3mm thick, 150mm long, 36mm wide having a central hole with a diame-
ter of 6mm. The difference between the working and stress-free temperatures used to

29



calculate the residual thermal stresses is −155◦C. An implicit dynamic analysis was
performed considering a loading rate of 2mm/min. The use of an implicit dynamic
finite element model enables the prediction of the load drop that occurs when the
specimens fail catastrophically. An implicit static analysis normally fails to converge
at the maximum load.

The material properties used are shown in Tables 3.4-3.6.

Table 3.4 Ply elastic properties for IM7-8552.

Property Value
E1 (GPa) 171.42
E2 (GPa) 9.08
G12 (GPa) 5.29
υ12 0.32

Table 3.5 Ply strengths for IM7-8552.

Property Value (MPa)
XT 2326.2
XC 1200.1
Y ud

T 62.3
YC 199.8
Sud

L 92.3

Table 3.6 Calculated in-situ strengths for IM7-8552 (MPa).

Ply configuration YT SL

Thin embedded ply 160.2 130.2
Thin outer ply 101.4 107.0

Table 3.7 Fracture energies for transverse fracture for IM7-8552 (kJ/m2).

Property Value
G2+ 0.2774
G6 0.7879

The fracture energy G2- is calculated as G2− = G6/ cos α0 with α0 = 53◦.
As explained in section 3.2.3, the UMAT subroutine verifies the size of the elements

in the beginning of the analysis: if the size of one element is large enough to cause a
snap-back of the constitutive model, the strength of that element is reduced. There-
fore, the mesh should be refined in the locations where damage initiation is likely
to take place. It should be noted that a strength reduction may cause difficulties in
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Table 3.8 Fracture energies for longitudinal fracture for IM7-8552 (kJ/m2).

Property Value
G1+ 81.5
G1- 106.3

coarse regions of the model away from the damage zones where the strength could be
reduced enough to cause premature damage.

To overcome this difficulty, it is suggested to assign different material properties
to the coarse elements located in regions where no damage takes place. The strategy
proposed consists in increasing the fracture toughness of these elements to avoid the
strength reduction. For example:

****

**** MATERIAL #4: linear elastic material

****

** E1, E2, G12, v12, alpha1, alpha2, XT , XPO,

** XC, YT, YC, ALPHA0 , SL, SLud , GIC_F1, GIC_FE

** GIC_M, GIIC_M, GIC_FC, GIIC_M-, beta1 , beta2 , DM , Eta_viscous

**

*MATERIAL,NAME=LE

*USER MATERIAL, CONSTANTS=24, UNSYMM

171420., 9080. , 5290., 0.32 , -5.5E-6, 25.8E-6, 2323.5, 232.3,

1200.1, 113.3 , 199.8 , 0.925, 106.9, 92.3 , 31.5e5, 50.0e5,

0.2774e5, 0.7879e5, 106.3e5 , 1.3092e5, 0.000, 0.005, 0.0, 0.000

**

*DENSITY

1590E-6

**

*DEPVAR

15

Figure 3-2 highlights in red the region modeled with coarse elements with increased
toughness, which implies a linear-elastic response for these elements. Figure 3-3 shows
the region modeled with the actual material properties.
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Step: Step-2
Increment    400: Step Time =    33.37

SPECIMEN OHT3V2
ODB: oht3v2.odb    ABAQUS/STANDARD Version 6.5-2    Thu Oct 12 04:28:54 GMT Daylight Time 2006

1

2

3

Figure 3-2 Coarse mesh - elements with toughness increased.
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Step: Step-2
Increment    400: Step Time =    33.37

SPECIMEN OHT3V2
ODB: oht3v2.odb    ABAQUS/STANDARD Version 6.5-2    Thu Oct 12 04:28:54 GMT Daylight Time 2006

1

2

3

Figure 3-3 Refined mesh - real material properties.

The damage variable d6 in the 0◦ ply at the onset of damage localization is shown
in Figure 3-4.

(Ave. Crit.: 75%)
fraction = -0.875000, Layer = 2
SDV10

-4.858e-02
+5.586e-02
+1.603e-01
+2.647e-01
+3.692e-01
+4.736e-01
+5.781e-01
+6.825e-01
+7.869e-01
+8.914e-01
+9.958e-01
+1.100e+00
+1.205e+00

Step: Step-2
Increment     20: Step Time =    32.86
Primary Var: SDV10
Deformed Var: U   Deformation Scale Factor: +7.000e+00

SPECIMEN OHT3V2
ODB: oht3v2.odb    ABAQUS/STANDARD Version 6.5-2    Thu Oct 12 04:28:54 GMT Daylight Time 2006

1

2

3

Figure 3-4 Onset of damage localization.

The predicted load-displacement relation is shown in Figure 3-5, where it can be
observed that an implicit dynamic analysis predicts the load drop that occurs when
the specimen fails catastrophically.
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Figure 3-5 Predicted load-displacement relation.
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4. VUMAT SUBROUTINE

4.1 Overview

The third part of this report is a reference manual for the use of an ABAQUSr user
subroutine VUMAT [1] with the implementation of the continuum damage model for
laminated composites described in section 3 and in the Appendix B. There are several
relevant loading scenarios for which an explicit finite element code is more appropriate.
For example, in dynamically loaded composite structures or in problems with multiple
contact surfaces. In addition, explicit formulations can provide solutions for problems
that suffer from severe convergence difficulties when implicit finite element codes are
used.

Following the strategy used in the development of the UMAT subroutine, the code
described in this section is able to simulate the mechanical response of composite
structures using both shell and continuum elements.

This section includes an example of the simulation of a low-velocity impact in
a composite laminate, using the VUMAT subroutine developed in this project, an ad-
ditional VUMAT subroutine that simulates delamination onset and propagation (the
development of this second VUMAT subroutine was planned for the second year of this
project).

4.2 Input into Abaqus explicit

4.2.1 Shell elements

Material properties

The material properties must be defined by the user in the jobname.inp file according
to the following example.

**

** USER PLY MATERIAL

**

** E1 , E2 , G12 , v12 , alpha1, alpha2, XT , XPO,

** XC , YT , YC , ALPHA0 , SL , SLud , GIC_F1, GIC_FE

** GIC_M, GIIC_M, GIC_FC, GIIC_M-, beta1 , beta2 , DM , Eta_viscous

**

*MATERIAL,NAME=IM7-8552-Damage
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*USER MATERIAL, CONSTANTS=25

171420., 9080., 5290., 0.32 , -5.5E-6, 25.8E-6, 2323.5, 232.3,

1200.1, 132.7, 199.8, 0.925, 117.1, 92.3, 81.5, 10.0,

1.0, 2.0, 106.3, 1.31, 0.000, 0.005, 0.0, 0.0,

*Density

1.59e-9

*DEPVAR,DELETE=17

17

1, rfT, "Fiber tension internal variable"

2, rmT, "Matrix tension internal variable"

3, rfC, "Fiber compr internal variable"

4, rmC, "Matrix compr internal variable"

5, AfC, "Fiber tension adjustment parameter"

6, AmT, "Matrix tension adjustment parameter"

7, AmC, "Matrix compr adjustment parameter"

8, d1, "Damage variable, direction 11"

9, d2, "Damage variable, direction 22"

10, d6, "Damage variable, direction 12"

11, gf, "Fiber dissipated energy"

12, gm, "Matrix dissipated energy"

13, E11, "Direct strain, direction 11"

14, E22, "Direct strain, direction 22"

15, E33, "Direct strain, direction 33"

16, E12, "Shear strain, direction 12"

17, STATUS, "Status of the element"

The STATUS variable defines the status of an element: if STATUS=1 the element
is active, and if STATUS=0 the element has been deleted. The criterion implemented
to delete an element from the mesh is based on the value of the damage variable
associated with failure mechanisms in the longitudinal direction: if d1 ≥ 0.999 the
element is deleted from the mesh. This procedure prevents the severe reduction on the
stable time increment that results from highly distorted, damaged, finite elements.

The material properties defined after the *USER MATERIAL command are shown
in Table 3.1.

Initial conditions

The model requires the definition of the initial values of the state variables. Therefore,
the jobname.inp file must include the following command:
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** shell elements

** ELSET, rfT, rmT, rfC, rmC, AfC, AmT, AmC,

** d1, d2, d6, gf, gm, e11, e22, e33,

** e12, STATUS

**

*Initial Conditions, Type=Solution

<elset>, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 1.0

where <elset> represents the group of all elements whose constitutive model is de-
fined by the VUMAT subroutine.

The state variables used are shown in Table 4.1.

Table 4.1 State variables.
STATEV(1) r1+ Damage threshold function
STATEV(2) r2+ Damage threshold function
STATEV(3) r1− Damage threshold function
STATEV(4) r2− Damage threshold function
STATEV(5) A1− Adjustment constant
STATEV(6) A2+ Adjustment constant
STATEV(7) A2− Adjustment constant
STATEV(8) d1 Damage variable
STATEV(9) d2 Damage variable
STATEV(10) d6 Damage variable
STATEV(11) g1 Energy dissipated
STATEV(12) g2 + g6 Energy dissipated
STATEV(13) ε11 11-component of the strain tensor
STATEV(14) ε22 22-component of the strain tensor
STATEV(15) ε33 33-component of the strain tensor
STATEV(16) ε12 12-component of the strain tensor
STATEV(17) STATUS Status of the element

4.2.2 Continuum elements

Material properties

The material properties must be defined by the user in the jobname.inp file according
to the following example.
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** MATERIAL #1: thin embedded ply

**

** E1 , E2 , G12 , v12 , alpha1, alpha2, XT , XPO,

** XC , YT , YC , ALPHA0 , SL , SLud , GIC_F1, GIC_FE

** GIC_M, GIIC_M, GIC_FC, GIIC_M-, beta1 , beta2 , DM , Eta_viscous

** v23 , thickness

**

*MATERIAL,NAME=IM7-8552-thin

*USER MATERIAL, CONSTANTS=26, UNSYMM

**

171420., 9080. , 5290., 0.32 , -5.5E-6, 25.8E-6, 2323.5, 232.3,

1200.1, 160.2 , 199.8 , 0.925, 130.2, 92.3, 31.5, 50.0,

0.2774, 0.7879, 106.3 , 1.3092, 0.000, 0.005, 0.0, 0.000,

0.52 , 0.125

**

*DENSITY

1590E-6

**

*DEPVAR,DELETE=20

20

1, rfT, "Fiber tension internal variable"

2, rmT, "Matrix tension internal variable"

3, rfC, "Fiber compr internal variable"

4, rmC, "Matrix compr internal variable"

5, AfC, "Fiber tension adjustment parameter"

6, AmT, "Matrix tension adjustment parameter"

7, AmC, "Matrix compr adjustment parameter"

8, d1, "Damage variable, direction 11"

9, d2, "Damage variable, direction 22"

10, d6, "Damage variable, direction 12"

11, gf, "Fiber dissipated energy"

12, gm, "Matrix dissipated energy"

13, E11, "Direct strain, direction 11"

14, E22, "Direct strain, direction 22"

15, E33, "Direct strain, direction 33"

16, E12, "Shear strain, direction 12"

17, E13, "Shear strain, direction 13"

18, E23, "Shear strain, direction 23"

19, d3, "Damage variable direction 33"

20, STATUS, "Status of the element"

The material properties defined after the *USER MATERIAL command are shown in
Table 3.3.

The state variables used are shown in Table 4.2.
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Table 4.2 State variables.
STATEV(1) r1+ Damage threshold function
STATEV(2) r2+ Damage threshold function
STATEV(3) r1− Damage threshold function
STATEV(4) r2− Damage threshold function
STATEV(5) A1− Adjustment constant
STATEV(6) A2+ Adjustment constant
STATEV(7) A2− Adjustment constant
STATEV(8) d1 Damage variable
STATEV(9) d2 Damage variable
STATEV(10) d6 Damage variable
STATEV(11) g1 Energy dissipated
STATEV(12) g2 + g6 Energy dissipated
STATEV(13) ε11 11-component of the strain tensor
STATEV(14) ε22 22-component of the strain tensor
STATEV(15) ε33 33-component of the strain tensor
STATEV(16) ε12 12-component of the strain tensor
STATEV(17) ε13 13-component of the strain tensor
STATEV(18) ε23 23-component of the strain tensor
STATEV(19) d3 Damage variable
STATEV(20) STATUS Status of the element

Initial conditions

The model requires the definition of the initial values of the state variables. Therefore,
the jobname.inp file must include the following command:

** 3D elements

** ELSET, rfT, rmT, rfC, rmC, AfC, AmT, AmC,

** d1, d2, d6, gf, gm, e11, e22, e33,

** e12, e13, e23, STATUS

**

*Initial Conditions, Type=Solution

<elset>, 1.0, 1.0, 1.0, 1.0, -1.0, -1.0, -1.0,

0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,

0.0, 0.0, 0.0, 0.0, 1.0
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4.3 Example

An ABAQUSr model with an example of the use of the VUMAT subroutine in the
strength prediction of a Hexcel IM7-8552 [±458] CFRP laminate under a low-velocity
impact can be downloaded from the following URL:

www.fe.up.pt/~pcamanho/Impact_Test.inp

www.fe.up.pt/~pcamanho/Laminate_Solid_Test.icl

The model of the composite plies is created using ABAQUSr C3D8 solid elements
and it represents a 2mm thick, 100mm×100mm square specimen, as shown in Figure
4-1.

X

Y

Z

Figure 4-1 Specimen and impactor.

The impact results from the contact of the specimen with a semi-spherical rigid
body with a diameter of 16mm, mass of 1kg, initial velocity of 4m/s, corresponding
to an impact energy of 8J. The composite specimen is clamped along all edges. The
material properties used are shown in Tables 3.4-3.6. In addition to the the simulation
of ply failure mechanisms by means of the subroutine VUMAT, the separation between
the +45 and -45 plies (delamination) is simulated using another VUMAT subroutine
where a cohesive formulation previously proposed is implemented in ABAQUSr solid
cohesive elements [12].
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Figure 4-2 shows the predicted delaminated region at the interface between the
+45 and -45 plies. The damage variable d6 in the−45◦, corresponding to the back-face
of the laminate, is shown in Figure 4-3.

X

Y

Z

Delaminated region

Figure 4-2 Predicted delamination.

X

Y

Z

Transverse cracking (d6)

Figure 4-3 Predicted transverse matrix cracking in the laminate back-face.
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Figure 4-4 shows the damage on the top (+45) ply, at the contact region between
the impactor and the laminate.

X

Y

Z

Transverse cracking (d6)

Figure 4-4 Predicted transverse matrix cracking in the contact region between the
impactor and laminate.

The preliminary results obtained in this example indicate that the model devel-
oped is able to simulate the interaction between the failure mechanisms. In addition,
the implementation of the material model in ABAQUSr explicit renders the solution
of complex dynamic problems involving contact and failure possible.
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5. CONCLUSIONS

A new ABAQUSr UVARM subroutine with the computational implementation of the
LaRC failure criteria was developed in the first phase of this project. This subroutine
predicts first ply failure, and it may be used for the preliminary analysis of composite
structures, for the identification of critical regions of such structures, and in the design
of structures where no type of damage is acceptable (e.g. cryogenic fuel tanks).

A continuum damage model able to predict the onset and propagation of in-
tralaminar failure mechanisms was developed and implemented in both UMAT and
VUMAT ABAQUSr subroutines. The model may be used in both shell and three-
dimensional continuum elements using ABAQUSr implicit (UMAT) and ABAQUSr

explicit (VUMAT). The computational models were implemented according to the re-
quirements establishes in the beginning of the project:

• Accurate prediction of damage onset. The failure criteria implemented is able
to represent the following characteristics of the mechanical behavior of lami-
nated composite materials: i) in-situ effects, i.e. the effective increase of the
transverse tensile and in-plane shear strengths of a ply when it is embedded in
a multidirectional laminate; ii) the beneficial effect of transverse compression
on the apparent shear strength of a ply; and iii) the effect of the shear stresses
on fiber kinking.

• Crack closure under load reversal. The continuum damage model implements
an unilateral representation of cracks, allowing the load path continuity to be
recovered when cracks close under compressive loads.

• Residual thermal stresses. The constitutive model represents the effects of the
residual thermal stresses in the plies of a multidirectional laminate.

• Standard material properties. The majority of the material properties required
by the model can be obtained from standard test methods.

• Ply-level properties. The model uses ply properties, thus avoiding the need to
test laminates every time the lay-up or stacking sequence is modified.

• Regularization of energy dissipated. The model avoids mesh dependency prob-
lems and assures the objectivity of the numerical solution by accounting for the
toughnesses of the material in each damage mode as well as the energy dissi-
pated by damage at a material integration point. In addition, procedures to
rapidly assess adequacy of the mesh resolution and to provide corrective means
when maximum mesh size requirements cannot be met were proposed.

• Explicitly integrated constitutive model. The model does not require iterations
to solve the constitutive equations, being therefore suitable to be used in large
scale computations.
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• Fast convergence rate of numerical solution. The model includes stabilization
methods that mitigate the problem of slow convergence rate of models involving
strain-softening.

It was also shown that the continuum damage model used in shell elements is
able to predict the effect of size on the strength of quasi-isotropic CFRP laminates.
In addition, the preliminary validation example of a low-velocity impact load on a
CFRP laminate indicates that the combination of a ply-based damage model and a
cohesive formulation for the simulation of delamination is a strategy that may capture
the interaction between these different failure mechanisms.

Future work should address the issues related to the mesh-dependent directional-
ity of crack propagation that is often observed in continuum damage models. This
problem may be mitigated by using an improved kinematic representation of the fail-
ure mechanisms, such as the transversely isotropic damage model presented in [13]
and presented in Appendix D (the full development of this model was planned for the
second year of the project).

44



Bibliography

[1] Dassault Systemes. 2006. ABAQUS 6.7 User’s Manuals.

[2] Camanho, P. P.; Dávila, C. G.; Pinho, S. T.; Iannucci, L., and Robinson, P. Pre-
diction of in situ strengths and matrix cracking in composites under transverse
tension and in-plane shear. Composites-Part A. 2005; 37:165-176.

[3] Dávila, C. G.; Camanho, P. P., and Rose, C. A. Failure criteria for FRP lami-
nates. Journal of Composite Materials. 2005; 39:323-345.

[4] Dávila, C. G and Camanho, P. P. Failure Criteria for FRP Laminates in Plane
Stress. NASA/TM-2003-212663. National Aeronautics and Space Administra-
tion; 2003.

[5] Pinho, S. T.; Dávila, C. G.; Camanho, P. P.; Iannucci, L., and Robinson, P.
Failure models and criteria for FRP under in-plane shear or three-dimensional
stress states including shear non-linearity. NASA/TM-2005-213530. 2005.

[6] Parvizi, A.; Garrett, K., and Bailey, J. Constrained cracking in glass fibre-
reinforced epoxy cross-ply laminates, Journal of Material Science. 1978; 13:195-
201.

[7] Dvorak, G. J. and Laws, N. Analysis of progressive matrix cracking in composite
laminates II. first ply failure. Journal of Composite Materials. 1987; 21:309-329.

[8] Maimı́, P.; Camanho, P.P., Mayugo, J.A. and Dávila C.G. A thermodynamically
consistent damage model for advanced composites. NASA Technical Memoran-
dum 214282. National Aeronautics and Space Administration, 2006.

[9] Maimı́, P.; Camanho, P.P., Mayugo, J.A. and Dávila, C.G. A continuum dam-
age model for composite laminates: part I - constitutive model. Mechanics of
Materials. 2007; 39:897-908.

[10] Maimı́, P.; Camanho, P.P., Mayugo, J.A. and Dávila, C.G. A continuum damage
model for composite laminates: part II - computational implementation and
validation. Mechanics of Materials. 2007; 39:909-919.

[11] Camanho, P.P.; Maimı́, P. and Dávila, C.G. Prediction of size effects in notched
laminates using continuum damage mechanics. Composites Science and Technol-
ogy. 2007; 67:2715-2727.

45



[12] Gonzlez, E.V., Maimı́, P., Turon, A., Camanho, P.P., Renart, J. Simulation of
delamination by means of cohesive elements using an explicit finite element code,
Computers, Materials and Continua. 2008; submitted for publication.

[13] Maimı́, P., Camanho, P.P., Mayugo, J.A. A three-dimensional damage model
for transversely isotropic composite laminates. Journal of Composite Materials.
2008; in press.

46



Appendix A: LaRC03-UVARM-v1 Fortran subroutine

SUBROUTINE UVARM(UVAR,DIRECT,T,TIME,DTIME,CMNAME,ORNAME,
1 NUVARM,NOEL,NPT,LAYER,KSPT,KSTEP,KINC,NDI,NSHR,COORD,
2 JMAC,JMATYP,MATLAYO,LACCFLA)

C
INCLUDE ’ABA_PARAM.INC’

C
common/crdflg/lrdflg

C
CHARACTER*80 CMNAME,ORNAME,CMNAME1
CHARACTER*3 FLGRAY(15)
CHARACTER xoutdir*255, xfname*80
CHARACTER dmkname*255, FNAMEX*80
DIMENSION UVAR(*),DIRECT(3,3),T(3,3),TIME(2)
DIMENSION ARRAY(15),JARRAY(15),JMAC(*),JMATYP(*),COORD(*)

C
DIMENSION stress(6)

C The dimensions of the variables FLGRAY, ARRAY and JARRAY
C must be set equal to or greater than 15.

double precision alphao,alphamem(1),psimem(1),thetamem(1),
1 omega(1),lambda(1),
2 fmat(1),fkink(1),fft(1),epsmato(1),
3 sigmato(1),epskinko(1),sigkinko(1),epsfto(1),
4 sig1(1),sig2(1),sig3(1),tau12(1),tau23(1),tau31(1),
5 eps1(1),eps2(1),eps3(1),eps12(1),eps23(1),eps31(1),
6 s12,s23,fio,beta

C
integer lft,llt

C
pi=dacos(-1.d0)
degtorad=pi/180.d0

C
do i=1,nuvarm
uvar(i) = 0.d0
enddo

C
----------------------------------------------------------------------
C Open and read input file with material properties:
C directory/jobname.mt
----------------------------------------------------------------------

lxfname = 0
lxoutdir = 0
xfname =’ ’
xoutdir =’ ’

C
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call getjobname(xfname,lxfname) ! input file name
call getoutdir(xoutdir,lxoutdir) ! output directory

C
if(lrdflg.ne.1) then
fnamex=dmkname(xfname(1:lxfname),xoutdir(1:lxoutdir),’.mt’)
open(unit=17,file=fnamex,status=’old’)
lrdflg = 1
endif

C
read (17,*)
read (17,*) klarc

C
CMNAME1=’**dummy_name**’
do while(CMNAME1.NE.CMNAME) ! search for material type
read (17,*)
read (17,*) CMNAME1
if(CMNAME1.EQ.CMNAME) then
read (17,*)
read (17,*) ym1, ym2, ym3, nu21, nu31, nu32
read (17,*)
read (17,*) g12, g23, g31, xt, xc, yt, yc, s12
read (17,*)
read (17,*) alphao, beta, g, slis

else
do i=1,6
read(17,*)
enddo

endif
enddo

C
rewind 17

C
----------------------------------------------------------------------
C Compute derived material properties
----------------------------------------------------------------------

alphao=alphao*degtorad
st=yc*dcos(alphao)*(dsin(alphao)+dcos(alphao)/dtan(2.d0*alphao))
s23=st
sl=s12
etat=-1.d0/dtan(2.d0*alphao)
etal=-s12*dcos(2*alphao)/(yc*dcos(alphao)*dcos(alphao))

C
----------------------------------------------------------------------
C Read stress tensor from current increment
----------------------------------------------------------------------

CALL GETVRM(’S’,ARRAY,JARRAY,FLGRAY,JRCD,JMAC,JMATYP,MATLAYO,
1 LACCFLA)

C
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if(klarc.eq.3) then ! LaRC03 failure criteria
stress(1) = array(1)
stress(2) = array(2)
stress(3) = array(3)
stress(4) = array(4)
stress(5) = array(5)
stress(6) = array(6)

C
call larc03(stress(1),stress(2),stress(3),stress(4),

1 stress(5),stress(6),XT,XC,YT,YC,
2 SL,SLIS,ST,G,G12,ETAL,ETAT,NDIM,UVAR,ANGLES,
3 NOUT,NUVARM)
endif

C
----------------------------------------------------------------------
*
* End of main program
*
----------------------------------------------------------------------

RETURN
END

* <<<<<<<<<<<<<<<<<<<<<<<< SUBROUTINE LARC03 >>>>>>>>>>>>>>>>>>>>>>>>> *
* *
* LaRC03 failure criteria *
* *
* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> *

SUBROUTINE LaRC03(S11,S22,S33,S12,S13,S23,XT,XC,YT,YC,
1 SL,SL_IS,ST,G,G12,ETA_L,ETA_T,NDIM,FI,ANGLES,
2 NOUT,NUVARM)

C
IMPLICIT NONE

C
DOUBLE PRECISION S11,S22,S33,S12,S13,S23,XT,XC,YT,YC,

1 SL,SL_IS,ST,G,G12,ETA_L,ETA_T,FI(*),ANGLES,
2 PI,S11_M,S22_M,S33_M,S12_M,S13_M,S23_M,FLARC03,
3 FMCCAULEY,ALPHA,FIP(7)

C
INTEGER NDIM,NOUT,I,NUVARM

C
PI = DACOS(-1.D0)

C
do i=1,7
fip(i) = 0.d0
enddo

C-----------------------------------------------------------------------
*
* Transverse (matrix)
*

49



----------------------------------------------------------------------
IF(S22.GT.0.D0) THEN ! matrix tension
IF(S11.LT.0.D0.AND.DABS(S11).LT.XC/2) THEN
CALL ROTATE_PHI(SL,XC,ETA_L,S11,S22,S12,0.D0,0.D0,

1 S11_M,S22_M,S12_M,S13_M,S23_M,G12,NDIM)
FIP(1) = (1-G)*S22_M/YT+G*S22_M/YT*S22_M/YT+S12_M/SL_IS*

1 S12_M/SL_IS
ELSE
FIP(2) = (1-G)*S22/YT+G*S22/YT*S22/YT+S12/SL_IS*S12/SL_IS

ENDIF
C

ELSE ! matrix compression
IF(S11.GE.-YC) THEN
FIP(3) = FLaRC03(ALPHA,S22,S12,ETA_L,ETA_T,SL_IS,ST,PI)

ELSE
CALL ROTATE_PHI(SL,XC,ETA_L,S11,S22,S12,0.D0,0.D0,

1 S11_M,S22_M,S12_M,S13_M,S23_M,G12,NDIM)
FIP(4) = FLaRC03(ALPHA,S22_M,S12_M,ETA_L,ETA_T,SL_IS,ST,PI)
ENDIF
ENDIF

C-----------------------------------------------------------------------
*
* Longitudinal (fibre)
* C
----------------------------------------------------------------------

IF(S11.GE.0.D0) THEN ! fibre tension
FIP(5) = S11/XT

C
ELSE ! fibre compression
CALL ROTATE_PHI(SL,XC,ETA_L,S11,S22,S12,0.D0,0.D0,

1 S11_M,S22_M,S12_M,S13_M,S23_M,G12,NDIM)
IF(S22_M.LT.0.D0) THEN
FIP(6) = FMcCAULEY((DABS(S12_M)+ETA_L*S22_M)/SL_IS) ! LaRC#4

ELSEIF (DABS(S11).GE.XC/2.D0) THEN
FIP(7) = (1-G)*S22_M/YT+G*S22_M/YT*S22_M/YT+S12_M/SL_IS

1 *S12_M/SL_IS
ENDIF
ENDIF

C
FI(1) = MAX(FIP(1),FIP(2)) ! Transverse with S22>0

C
FI(2) = MAX(FIP(3),FIP(4)) ! Transverse with S22<0

C
FI(3) = FIP(5) ! Longitudinal with S11>0

C
FI(4) = MAX(FIP(6),FIP(7)) ! Longitudinal with S11<0

C
----------------------------------------------------------------------
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RETURN
END

* <<<<<<<<<<<<<<<<<<<<<<<<< FUNCTION FLaRC03 >>>>>>>>>>>>>>>>>>>>>>>>> *
* *
* MATRIX COMPRESSION FAILURE CRITERION (LaRC03) *
* *
* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> *

REAL*8 FUNCTION FLaRC03(ALPHA,S22,S12,ETAL,ETAT,SL_IS,ST,PI)
C

IMPLICIT NONE
C

DOUBLE PRECISION ALPHA,S22,S12,ETAL,ETAT,SL_IS,ST,PI,THETA,
1 TAUT_EFF, FMCCAULEY,TAUL_EFF,FIC,ALPHA1,taul,taut
INTEGER I

C Cycle over possible fracture angles
FLaRC03=0.d0
DO i=0,56 ! Determination of the fracture angle
ALPHA1 = i*PI/180.D0
IF(ALPHA1.EQ.0.D0.OR.S22.EQ.0.D0) THEN ! Avoids divisions by zero
THETA = PI/2.D0
ELSE
THETA = DATAN(-dabs(S12)/(S22*DSIN(ALPHA1)))
ENDIF

c
TAUT_EFF = FMcCAULEY(-S22*dcos(alpha1)*(dsin(alpha1)-etat*

1 dcos(alpha1)*dcos(theta)))
c

TAUL_EFF = FMcCAULEY(dcos(alpha1)*(dabs(s12)+etal*s22*
1 dcos(alpha1)*dsin(theta)))

c
FIC = (TAUT_EFF/ST)*(TAUT_EFF/ST)+

1 (TAUL_EFF/SL_IS)*(TAUL_EFF/SL_IS)
C

FLaRC03 = max(FLaRC03,FIC)
ENDDO

C
RETURN
END

* <<<<<<<<<<<<<<<<<<<<<< SUBROUTINE ROTATE_PHI>>>>>>>>>>>>>>>>>>>>>>>> *
* *
* ROTATION OF STRESSES TO THE MISALIGNMENT COORDINATE FRAME *
* *
* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> *

SUBROUTINE ROTATE_PHI(SL,XC,ETAL,S11,S22,S12,S13,S23,
1 S11T,S22T,S12T,S13T,S23T,G12,NDI)

C
IMPLICIT NONE

C
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DOUBLE PRECISION SL,XC,ETAL,S11,S22,S12,S13,S23,
1 S11T,S22T,S12T,S13T,S23T,G12,aa,cc,phiC,
2 PHI,sqr,phi0,cp,ss,c2,s2

C
INTEGER NDI

C Calculate fiber misalignment angle (Linear shear law and
C small angle approximations)

cc = dABS(SL/XC)
aa = cc+ETAL
sqr = dsqrt(1.d0-4.0d0*aa*cc)
phiC = datan((1.d0-sqr)/(2.0d0*aa)) ! select smallest root

C
phi0 = (dabs(S12)+(G12-XC)*phiC)/(G12+S11-S22)

c
cp = dcos(phi0)
ss = dsin(phi0)
c2 = cp*cp
s2 = ss*ss

C C Calculate stresses in misalignment coordinate frame C
S11T = S11*c2+S22*s2+2.0d0*cp*ss*DABS(S12)
S22T = S11*s2+S22*c2-2.0d0*cp*ss*DABS(S12)
S12T = -ss*cp*S11+ss*cp*S22+(c2-s2)*DABS(S12)

C
RETURN
END

* <<<<<<<<<<<<<<<<<<<<<<< FUNCTION FMcCAULEY >>>>>>>>>>>>>>>>>>>>>>>>> *
* *
* McCAULEY OPERATOR *
* *
* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> *

REAL*8 FUNCTION FMcCAULEY(X)
C

IMPLICIT NONE
C

DOUBLE PRECISION X
C

IF(X.LE.0.D0) THEN
FMcCAULEY = 0.D0
ELSE
FMcCAULEY = X
ENDIF

C
RETURN
END

* <<<<<<<<<<<<<<<<<<<<<<<< FUNCTION DMKNAME >>>>>>>>>>>>>>>>>>>>>>>>> *
* *
* Compose a filename directory/jobname.exten *
* *
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* <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> *
character*(*) function dmkname(fname,dname,exten)

C
character*(*) fname,dname,exten

C C fname I jobname C dname I directory C exten I
extension C dmkname O directory/jobname.exten C

ltot = len(fname)
lf = 0
do k1 = ltot,2,-1
if (lf.eq.0.and.fname(k1:k1).ne.’ ’) lf = k1

end do
C

ltot = len(dname)
ld = 0
do k1 = ltot,2,-1
if (ld.eq.0.and.dname(k1:k1).ne.’ ’) ld = k1

end do
C

ltot = len(exten)
le = 0
do k1 = ltot,2,-1
if (le.eq.0.and.exten(k1:k1).ne.’ ’) le = k1

end do
C

if ((lf + ld + le) .le. len(dmkname)) then
dmkname = dname(1:ld)//’/’//fname(1:lf)
ltot = ld + lf + 1
if ( le.gt.0) then

dmkname = dmkname(1:ltot)//exten(1:le)
end if

end if
C

return
end

C=======================================================================C
C ==== end of program ====
C=======================================================================C
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Abstract

This paper examines the use of a continuum damage model to predict strength and size effects in notched carbon–epoxy laminates.
The effects of size and the development of a fracture process zone before final failure are identified in an experimental program. The
continuum damage model is described and the resulting predictions of size effects are compared with alternative approaches: the point
stress and the inherent flaw models, the Linear Elastic Fracture Mechanics approach, and the strength of materials approach. The results
indicate that the continuum damage model is the most accurate technique to predict size effects in composites. Furthermore, the contin-
uum damage model does not require any calibration and it is applicable to general geometries and boundary conditions.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Size effect; C. Continuum damage mechanics; Fracture mechanics
1. Introduction

The introduction of advanced composite materials in
new applications relies on the development of accurate
analytical and computational tools that are able to predict
the thermo-mechanical response of composites under gen-
eral loading conditions and geometries. In the absence of
accurate analytical models, the design process has to rely
on costly matrices of mechanical tests based on large num-
bers of test specimens [1] and empirical knockdown factors
[2].

The prediction of ultimate strength remains the main
challenge in the simulation of the mechanical response of
composite materials [3]. The simulation of size effects on
the strength of composites is of particular interest and rel-
evance [4–8]: reliable analytical and numerical models must
represent the decrease of the ultimate strength when the
structural dimensions increase [9].
0266-3538/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compscitech.2007.02.005
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Size effects in laminated composites occur at different
material and structural levels. At the meso-mechanical
level, it is observed that the transverse tensile and in-plane
shear strengths of a ply constrained by sublaminates
depend on the ply thickness [10]. This size effect is normally
called the ‘‘in situ’’ effect and can be accounted for in the
prediction of matrix cracking onset using the ‘‘in situ’’
strengths in appropriate failure criteria. The ‘‘in situ’’
strengths can be calculated from analytical closed-form
solutions using ply elastic properties and fracture energies
[11,12].

Size effects also occur at the macro-mechanical level.
For example, it is shown in [13] that the strength of
notched quasi-isotropic composite laminates decreases for
increasing notch sizes when thin plies are used. This effect,
usually known as the ‘‘hole size effect’’, is caused by the
development and propagation of non-critical ply-level
damage mechanisms that occur in the vicinity of the hole
before the final collapse of the laminate. The exact nature
of the non-critical damage mechanisms has been reported
by several authors. Using Moiré interferometry in notched
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2716 P.P. Camanho et al. / Composites Science and Technology 67 (2007) 2715–2727
[0/+45/90/�45]s laminates, Mollenhauer et al. [14]
observed a strain redistribution as a result of matrix–fiber
splitting in the 0� surface ply and sub-surface ply cracking.
Green et al. [4] reported fiber splitting in the 0� plies, matrix
cracking in the off-axis plies, and delamination in [+45m/
90m/�45m/0m]ns carbon–epoxy laminates with a central cir-
cular hole.

The observed ply-level damage mechanisms can be
regarded as a fracture process zone that develops before
final failure of the laminate. For very small specimens,
the fracture process zone affects the entire width of the lam-
inate. On the other hand, the size of the fracture process
zone in large specimens is negligible when compared with
the characteristic dimensions of the specimen. The relative
dimension of the fracture process zone with respect to the
specimen size justifies the different strengths observed in
small and large specimens. Therefore, to predict the hole
size effect in quasi-brittle materials with general dimen-
sions, methods that account for the energy dissipated by
the propagation of non-critical damage mechanisms are
required [15].

While the strength of notched multidirectional laminates
manufactured using thin plies generally decreases with hole
diameter, Green et al. [4] reported an opposite trend for
laminates with plies with the same fiber orientation blocked
together (ply-level scaling): for a 4 mm thick [454/904/
�454/04]s carbon fiber reinforced plastic (CFRP) laminate,
increasing the hole size from 3.2 mm to 25.4 mm increased
the strength by 51%. This new finding was attributed to the
formation of delaminations at the edge of the hole [4]. Ply-
blocked specimens exhibit a delamination type of failure,
and for small hole diameters the size of the delamination
is relatively large and grows unstably.

Green et al. also performed tests on thickness-scaled
CFRP laminates [4]. A decrease of the ultimate strength
with test specimen thickness was reported for both ply-level
and sublaminate-level scaled laminates, where the laminate
thickness is increased by increasing the number of sublami-
nates while keeping the ply thickness constant. When
increasing the thickness from 1 mm to 8 mm, strength
reductions of 16.5% and 64.4% were measured for the
sublaminate level and ply-level scaled specimens, respec-
tively. The strength reduction was attributed to the higher
energy release rate at the interfaces of the ply-level scaled
specimens, which promotes delamination, and to the higher
stress concentration relief that occurs as a result of damage
in the surface plies of sublaminate-level scaled specimens.

The calculation of macro-mechanical size effects is often
based on semi-empirical methods that require calibration
such as the point stress and average stress models proposed
by Whitney and Nuismer [16]. The point stress model
assumes that final failure occurs when the stress at a char-
acteristic distance from the notch reaches the unnotched
strength of the laminate. In the average stress model, it is
assumed that final failure occurs when the laminate stress
averaged over a characteristic distance is equal to the
unnotched strength of the laminate. Modifications of the
point stress and average stress models using ply strengths
have been proposed to predict the strength of laminates
with open and loaded holes [17,18]. The advantage of using
ply properties rather than laminate properties is that the
need to measure laminate strengths for every layup is
avoided. However, the measurement of the characteristic
distances is still required for each lay-up and geometry [18].

On the other hand, models based on continuum damage
mechanics do not require calibration, so they potentially
provide the means for a truly predictive methodology for
the strength prediction of composite laminates. Continuum
damage models are defined in the framework of the ther-
modynamics of irreversible processes. Generally speaking,
the formulation of continuum damage models starts by
the definition of a potential (e.g. the complementary free
energy) as a function of one or more damage variables that
is the basis for establishing the relation between the stress
and the strain tensors. It is also required to define the dam-
age activation functions, i.e. the conditions that lead to the
onset of inelastic response, and the damage evolution func-
tions. Some of the models proposed in the literature are
exclusively based on thermodynamic restrictions of the
constitutive model and on some adjusting functions for
damage onset and evolution. Other models, besides satisfy-
ing the thermodynamic restrictions, are based on the fail-
ure mechanisms [19], i.e. the damage activation functions
are related to the physics of the different failure mecha-
nisms, and the damage variables are related to the orienta-
tion of the ply failure planes experimentally observed.
Mechanism-based continuum damage models can predict
damage onset and the extent and type of non-critical dam-
age mechanisms. Furthermore, continuum damage models
that relate the damage variables to the normal components
of the stress tensor are able to simulate the effect of crack
closure under load reversal cycles. Therefore, such models
can be used to predict the strength under non-monotonic
loading including load reversals.

The objective of this paper is to investigate the use of a
continuum damage model for the prediction of size effects
in notched carbon–epoxy laminates loaded in tension. An
experimental program is conducted to measure the relevant
material properties and to identify size effects occurring in
laminates with different hole sizes. The recently proposed
continuum damage model is described and analysis of open
hole specimens subjected to tension loads are presented.
The analyses results are compared with the experimental
data and with predictions obtained using a strength of
materials approach, Linear Elastic Fracture Mechanics,
and the point stress model.

2. Experimental program

2.1. Material selection and characterization

The material selected for the present study is Hexcel’s
IM7-8552 carbon epoxy unidirectional tape with a nominal
ply thickness of 0.131 mm. The material was cured accord-



Table 2
Measured ply strengths for IM7-8552

Property Standard Mean value (MPa) STDV (MPa) CV (%)

XT Ref. [20] 2326.2 134.1 5.8
XC Ref. [21] 1200.1 145.7 12.1
Y ud

T Ref. [20] 62.3 5.3 8.5
YC Ref. [21] 199.8 20.5 10.2
Sud

L Ref. [22] 92.3 0.6 0.7

Table 3
Measured fracture energies for transverse fracture for IM7-8552 (kJ/m2)

Property Mean value STDV CV (%)

G2+ 0.2774 0.0246 0.88
G6 0.7879 0.0803 10.19

Table 4
Calculated in situ strengths for IM7-8552 (MPa)

Ply configuration YT SL

Thin embedded ply 160.2 130.2
Thin outer ply 101.4 107.0
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ing to the manufacturer’s specifications, with temperature
stages of 110 �C for 1 h, followed by 180 �C for 2 h. A pres-
sure of 7 bar was applied for the duration of the cure cycle.

The fiber volume fraction was measured using image
processing techniques resulting in an average value of
59.1%. The coefficients of thermal expansion were mea-
sured using a dilatometer and the resulting values are
a11 = �5.5 · 10�6/�C for the longitudinal direction, and
a22 = 25.8 · 10�6/�C for the transverse direction. The elas-
tic properties and strengths were measured using ASTM
test standards [20–22]. Five specimens were used for each
test performed.

The mean measured values of the ply elastic properties
are shown in Table 1. E1 and E2 are the longitudinal and
transverse Young’s modulus respectively, G12 is the shear
modulus, and t12 is the major Poisson’s ratio. Table 1 also
presents the standard used in each test, the standard devi-
ation (STDV), and the coefficient of variation (CV).

The measured ply strengths are shown in Table 2. XT

and Y ud
T are the longitudinal and transverse tensile

strengths, respectively. XC and YC are the longitudinal
and transverse compressive strengths, respectively. Sud

L is
the in-plane shear strength.

The values of the transverse tensile strength (Y ud
T ) and of

the in-plane shear strength (Sud
L ) measured in the test spec-

imens correspond to the strengths of unconstrained unidi-
rectional plies. The transverse tensile and shear strengths
of constrained plies (in situ strengths) are higher than the
ones of an unidirectional ply [10] and decrease when
increasing the ply thickness. The in situ strengths are calcu-
lated using models previously proposed by the authors,
which are based on the mode I fracture toughness, G2+,
and on the mode II fracture toughness, G6 [12]. These mod-
els use the simplifying assumption that the in situ strengths
are not a function of the elastic properties and geometry of
the neighboring layers.

To measure the components of the fracture toughness,
double cantilever beam (DCB) [23] and four-point bending
end notched flexure (4-ENF) [24] tests were performed. The
measured components of the fracture toughness are shown
in Table 3.

The in situ strengths are calculated as functions of the
fracture toughness and ply elastic properties using the
models described in [12] with a shear response factor
b = 2.98 · 10�8 MPa�3. The calculated in situ strengths
are shown in Table 4.

The shear strength in the transverse direction is calcu-
lated as [25,26]
Table 1
Measured ply elastic properties for IM7-8552

Property Standard Mean value STDV CV (%)

E1 (GPa) Ref. [20] 171.42 2.38 1.39
E2 (GPa) Ref. [20] 9.08 0.09 1.03
G12 (GPa) Ref. [22] 5.29 0.13 2.53
t12 Ref. [20] 0.32 0.02 6.18
ST ¼ Y C cos a0 sin a0 þ
cos a0

tan 2a0

� �
ð1Þ

where a0 is the fracture angle of a ply under pure transverse
compression [27]. For a fracture angle a0 = 53�, the shear
strength in the transverse direction is calculated as
ST = 75.3 MPa.

The continuum damage model also requires the fracture
energies per unit surface for longitudinal failure, G1+ (ten-
sion) and G1� (compression). These energies were mea-
sured using the Compact Tension (CT) and Compact
Compression (CC) tests in cross-ply laminates proposed
by Pinho et al. [28,29]. The measured fracture energies
per unit surface are shown in Table 5.

2.2. Notched laminates

Tests of notched composite laminates were performed to
quantify the size effect and to obtain empirical data to val-
idate the numerical model. Quasi-isotropic laminates were
manufactured in Hexcel IM7-8552 CFRP with a stacking
sequence of [90/0/±45]3s.

The unnotched tensile strength of the laminate, X L
T, was

measured using five test specimens and the average value
obtained was 845.1 MPa. The average value of the failure
strain, 12,900le, was measured in the five test specimens
using strain gages.
Table 5
Measured fracture energies for longitudinal fracture for IM7-8552 (kJ/m2)

Property Mean value STDV CV (%)

G1+ 81.5 6.1 7.6
G1� 106.3 2.2 2.1
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The notched test specimens were machined using a pro-
cedure that prevents delaminations in the regions close to
the insertion point and the exit of the drill bit. Sacrificial
frontal and backing plates were used to clamp the speci-
mens during the drilling process. All test specimens were
machined to class 1 hole quality used in aerospace [30].
No damage was observed in a sample of test specimens
inspected using X-rays.

Specimens with five different hole diameters, d = 2 mm,
4 mm, 6 mm, 8 mm, 10 mm and with a width-to-diameter
ratio w/d equal to 6 were tested in a MTS servo-hydraulic
machine following the ASTM D-5766 standard [31]
according to the test matrix shown in Table 6. Five speci-
mens were tested for each geometry.

The specimens labeled OHT3, OHT6 and OHT9 were
instrumented with two strain gages in the positions sche-
matically shown in Fig. 1.

The distances ds shown in Fig. 1 are respectively
10.5 mm, 13.5 mm, and 12.5 mm for the test specimens
OHT3, OHT6 and OHT9. The specimens OHT10 and
OHT11 were not instrumented. Acoustic emission (AE)
sensors were used in one test specimen for each size.
Table 6
Open hole tension test matrix

Specimen ref. d (mm) w (mm) w/d

OHT11 2 12 6
OHT10 4 24 6
OHT3 6 36 6
OHT6 8 48 6
OHT9 10 60 6

x

y ds

50mm

θ

SG2

SG3

d

w

Fig. 1. Position of strain gages.
Fig. 2 shows the applied load and the cumulative num-
ber of AE signals as a function of time for one OHT3 test
specimen.

From the AE signals shown in Fig. 2, it can be con-
cluded that non-critical damage mechanisms accumulate
well before final failure of the specimen, creating a fracture
process zone (FPZ). Similar results are observed in the
OHT6 and OHT9 specimens, as well as in other experimen-
tal investigations [4,14].

The remote failure stress is defined using the failure load
measured in the tests (�P ) and the measured values of the
specimen thickness (tL) and width (w) as: r1 ¼ �P

wtL
. The

remote failure stresses obtained for the different geometries
are summarized in Table 7.

The failure mode observed in all specimens is net-section
tension, as shown in Fig. 3. Fig. 4 shows the relation
between the remote stress and the strain measured by strain
gages SG3 for one test specimen of each of the three differ-
ent geometries.

The experimental results presented in Table 7 clearly
identify a size effect: an increase in the hole diameter from
2 mm to 10 mm results in a 32.8% reduction in the strength.
The observed size effect is caused by the development of the
fracture process zone identified in the AE results, which re-
distributes the stresses and dissipates energy. In small spec-
imens, the fracture process zone extends towards the edges
of the specimen and the average stress at the fracture plane
tends to the unnotched strength of the laminate.
Fig. 2. Applied load and AE signals as a function of time for the specimen
with a 6 mm diameter hole.

Table 7
Results of open-hole tensile tests

Hole diameter (mm) r1 (MPa) STDV (MPa) CV (%)

2 555.7 15.3 2.8
4 480.6 21.4 4.5
6 438.7 25.3 5.8
8 375.7 15.1 4.0

10 373.7 14.1 3.8



Fig. 3. Net-section tension failures in specimens with w/d = 6.

Fig. 4. Relation between remote stress and longitudinal strain in SG3.
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The effect of size on the strength can be explained using
a simple example based on the cohesive crack model, which
is well-suited to simulate fracture of quasi-brittle materials
[32]. Consider that the fracture process zone is represented
by a cohesive crack with the simple constitutive relation
shown in Fig. 5a.

The cohesive constitutive model relates the laminate
cohesive stress, r, to the crack opening, w, and must satisfy
the following condition:

R1
0

rðwÞdw ¼ GC. Structural col-
lapse occurs when a point along the fracture plane reaches
the critical opening, wc, and the corresponding length of
σ

Fig. 5. Cohesive crack constitutive law and fracture process zone. (a)
Constitutive model and (b) stress distributions along the fracture plane.
the fracture process zone can be estimated using the Irwin
model as lFPZ � EGC

pðX L
T
Þ2 [33,34].

Based on the constitutive law shown in Fig. 5a, it is pos-
sible to schematically represent the stress distribution at
failure along the fracture planes of specimens with different
sizes, as shown in Fig. 5b. It is observed that in small spec-
imens the fracture process zone extends towards the edges,
whereas in large specimens the fracture process zone is con-
fined to the vicinity of the hole. As a consequence, the aver-
age stress acting on the fracture plane, and hence the
strength, are larger for small specimens.
3. Simulation of the effect of size on strength

Strength prediction methods uniquely based on stress or
strain failure criteria are unable to predict the size effects
observed in notched specimens. Consider for example a cal-
culation of the final failure of a specimen with a central
hole using the value of the longitudinal stress in the fiber
direction (maximum stress criterion). The distribution of
the longitudinal stress in the critical plies, the 0� plies along
the fracture plane, defined by h = 90� in Fig. 1, can be cal-
culated using an approximate closed-form solution as [35]

r11 ¼ rxxð0; yÞðQ11a�11 þ Q12a�12Þ ð2Þ
where a�ij are the components of the laminate compliance
matrix defined as [36]

½a�� ¼ tL½A��1 ð3Þ
where the matrix [A] relates the in-plane forces per unit
length to the mid-plane strains. Qij are the components of
the plane stress transformed reduced stiffness matrix of
the 0� plies [18], and tL is the thickness of the laminate.

The through-the-thickness averaged normal stress in the
fracture plane for a quasi-isotropic laminate is calculated
by Tan [35] as

rxxð0; yÞ ¼
2þ ð1� d=wÞ3

6ð1� d=wÞ 2þ d
2y

� �2

þ 3
d
2y

� �4
" #

r1xx ;

y P d=2 ð4Þ

where r1xx is the remote tensile stress.
From Eqs. (2) and (4) it is clear that for the same mate-

rial and stacking sequence the stress concentration factor,
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and hence the maximum longitudinal stress in the 0� ply,
depends on the ratio between the specimen hole diameter
and width. Applying the maximum stress criterion and
using Eqs. (2) and (4)

r11

X T

¼ 1 ) r1 ¼ ð1� d=wÞX T

½2þ ð1� d=wÞ3�ðQ11a�11 þ Q12a�12Þ
ð5Þ

Eq. (5) demonstrates that the application of the maximum
stress criterion results in the same strength prediction for
different hole diameters when the d/w ratio is held constant.
The lack of size effect on the predicted strength clearly con-
tradicts the experimental observations.

3.1. Linear Elastic Fracture Mechanics

There are two approaches that can be used with Linear
Elastic Fracture Mechanics (LEFM) to calculate the effect
of size on the strength of notched composite laminates. In
the first approach, it is assumed that the length a of a pre-
existing crack in the laminate is scaled in the same propor-
tion of the hole diameter and specimen width and that the
critical value of the laminate’s stress intensity factor, KIc, is
independent of the crack length. Consider two specimens
with hole diameters d1 and d2. The stress intensity factor
at failure is

KIc ¼ r11 F
w1

d1

;
a1

d1

� � ffiffiffiffiffiffiffi
pa1

p ¼ r12 F
w2

d2

;
a2

d2

� � ffiffiffiffiffiffiffi
pa2

p ð6Þ

Taking into account the fact that the crack length is pro-
portional to the hole diameter and that the finite width cor-
rection factors, F(w/d,a/d), are equal for scaled geometries,
the failure stress of a specimen with a hole diameter d2 can
be calculated from the failure stress of the specimen with a
hole diameter d1

r12 ¼ r11

ffiffiffiffiffi
d1

d2

r
ð7Þ

The second approach to predict size effects using LEFM is
the inherent flaw model (IFM) proposed by Waddoups
et al. [13]. It is considered that the non-critical damage
mechanisms occurring before ultimate failure of a compos-
ite laminate can be lumped into a constant ‘‘region of in-
tense energy’’, or ‘‘inherent flaw’’, of length a. The
critical value of the stress intensity factor of a plate with
a hole of radius R is given by

KIc ¼ f ða;RÞr1
ffiffiffiffiffiffi
pa
p

ð8Þ
where f(a,R) is Bowie’s solution for the calculation of the
stress intensity factor of two cracks emanating from a cir-
cular hole, given as [37,38]

f ða;RÞ ¼ 0:5 3� a
d=2þ a

� �
1þ 1:243 1� a

d=2þ a

� �3
" #

ð9Þ
Waddoups et al. [13] considered that the strength of an
unnotched specimen can be predicted by taking into
account that the hole radius tends to zero, in which case
the function f(a,R) tends to one, leaving

KIc ¼ X L
T

ffiffiffiffiffiffi
pa
p

ð10Þ
where X L

T is the tensile strength of the unnotched laminate.
From (8) and (10), the equation proposed by Waddoups

et al. [13] is obtained

r1 ¼ X L
T=f ða;RÞ ð11Þ

The strength of the laminate containing an open-hole is pre-
dicted using two parameters: the length of the inherent flaw,
a, that needs to be calculated from a baseline specimen, and
the unnotched tensile strength of the laminate, X L

T.

3.2. Point-stress model

The point-stress model (PSM) proposed by Whitney and
Nuismer [16], considers that ultimate failure occurs when
the stress at a given distance from the hole boundary, rot,
reaches the unnotched strength of the laminate, X L

T: An
alternative version of the point stress model uses the ply
stresses and strengths, so that it is not necessary to measure
the strength for every different laminate.

Using Eqs. (2) and (4), the strength predicted using the
PSM is

r1 ¼ X T

2þ 1� d
w

� �3

6ð1� d
wÞ

2þ d
d þ 2rot

� �2

þ 3
d

d þ 2rot

� �4
" #(

� Q11a�11 þ Q12a�12

� �)�1

ð12Þ

Failure is predicted using two parameters: the characteris-
tic distance in tension rot, and the longitudinal tensile
strength of the ply, XT.

3.3. Continuum damage model

Continuum damage mechanics is a methodology well
suited for the simulation of damage evolution and ultimate
failure of composites under general loads and boundary
conditions for which no analytical solution is available.
The continuum damage model used here is based on previ-
ous work by the authors [19,39,40]. The main aspects of the
continuum damage model are presented in the following
sections. The full details of the model can be found in Refs.
[19,39,40].

3.3.1. Constitutive model

The proposed definition for the complementary free
energy density of a ply is

G ¼ r2
11

2ð1� d1ÞE1

þ r2
22

2ð1� d2ÞE2

� m12

E1

r11r22 þ
r2

12

2ð1� d6ÞG12

þ ða11r11 þ a22r22ÞDT þ ðb11r11 þ b22r22ÞDM ð13Þ

where the damage variable d1 is associated with longitudi-
nal (fiber) failure, d2 is the damage variable associated with
transverse matrix cracking, and d6 is the damage variable



P.P. Camanho et al. / Composites Science and Technology 67 (2007) 2715–2727 2721
associated with longitudinal and transverse cracks. b11 and
b22 are the coefficients of hygroscopic expansion in the lon-
gitudinal and transverse directions, respectively. DT and
DM are the differences of temperature and moisture con-
tent with respect to the corresponding reference values.
The coefficients of thermal expansion of a ply are also af-
fected by the failure mechanisms. The exact dependence
of the coefficients of thermal expansion with damage can
be obtained for simple laminates in the absence of stress
gradients [41]. These conditions are not met by the lami-
nate under investigation here and the effects of damage
on the coefficients of thermal expansion are neglected.

The strain tensor is equal to the derivative of the com-
plementary free energy density with respect to the stress
tensor

e ¼ oG
or
¼ H : rþ aDT þ bDM ð14Þ

The lamina compliance tensor can be represented as

H ¼ o
2G

or2
¼

1
ð1�d1ÞE1

� t12

E1
0

� t12

E1

1
ð1�d2ÞE2

0

0 0 1
ð1�d6ÞG12

2
664

3
775 ð15Þ

The closure of transverse cracks under load reversal is ta-
ken into account by defining four damage variables associ-
ated with longitudinal and transverse damage. To
distinguish between the active and the passive damage vari-
ables, it is necessary to define the longitudinal and trans-
verse damage modes as follows:

d1 ¼ d1þ
hr11i
jr11j

þ d1�
h�r11i
jr11j

d2 ¼ d2þ
hr22i
jr22j

þ d2�
h�r22i
jr22j

ð16Þ

where hxi is the McCauley operator defined as
hxi :¼ (x + jxj)/2.
1

3

2

3

r1+

r2+

12

21

σ

σ 22σ

11σ

a

c

Fig. 6. Fracture surfaces and corresponding internal variables. (a) Longitud
fracture with a = 0� and (d) transverse fracture with a = 53�.
3.3.2. Damage activation functions

The determination of the domain of elastic response
under complex stress states is an essential component of
an accurate damage model. It is assumed that the elastic
domain is enclosed by four surfaces, each of them account-
ing for one damage mechanism: longitudinal and trans-
verse fracture under tension and compression. Those
surfaces are formulated by the damage activation functions
based on the LaRC04 failure criteria [26].

The four damage activation functions, FN, associated
with damage in the longitudinal (N = 1+, 1�) and trans-
verse (N = 2+, 2�) directions represented in Fig. 6, are
defined as

F 1þ ¼ /1þ � r1þ 6 0; F 1� ¼ /1� � r1� 6 0

F 2þ ¼ /2þ � r2þ 6 0; F 2� ¼ /2� � r2� 6 0
ð17Þ

where the loading functions /N (N = 1+, 1�, 2+, 2�) de-
pend on the strain tensor and material constants (elastic
and strength properties). The elastic domain thresholds
rN (N = 1+, 1�, 2+, 2�) take an initial value of 1 when
the material is undamaged, and they increase with damage.
The elastic domain thresholds are related to the damage
variables dM (M = 1+, 1�, 2+, 2�, 6) by the damage evo-
lution laws.

The current values of the elastic domain thresholds rN

are obtained using the loading functions /N according to
the following equations [19,39,40]:

r1þ ¼ max 1;max
s¼0;t

/s
1þ

� �
;max

s¼0;t
/s

1�
� �	 


r1� ¼ max 1;max
s¼0;t

/s
1�

� �	 


r2þ ¼ max 1;max
s¼0;t

/s
2�

� �
;max

s¼0;t
f/s

2þg
	 


r2� ¼ max 1;max
s¼0;t

/s
2�

� �	 

ð18Þ
1

2

3

3

r1-

r2-

21σ 22σ

12σ 11σ

b

d

inal tensile fracture, (b) longitudinal compressive fracture, (c) transverse
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3.3.2.1. Longitudinal tensile fracture. The LaRC04 crite-
rion for fiber tension is defined as

/1þ ¼
E1

X T

e11 ¼
~r11 � t12~r22

X T

ð19Þ

where the effective stress tensor ~r is computed as
~r ¼ H�1

0 : e. H0 is the undamaged compliance tensor.

3.3.2.2. Longitudinal compressive fracture. The damage
activation function used to predict damage under longitu-
dinal compression (~r11 < 0) and in-plane shear (fiber kink-
ing) is established as a function of the components of the
stress tensor ~rðmÞ in a coordinate system (m) representing
the fiber misalignment

/1� ¼
j~rm

12j þ gL~rm
22

� �
SL

ð20Þ

where the coefficient of longitudinal influence can be
approximated as [26]

gL � � SL cosð2a0Þ
Y C cos2 a0

ð21Þ

with a0 = 53� [27]. The components of the effective stress
tensor in the coordinate system associated with the rotation
of the fibers are calculated as

~rm
22 ¼ ~r11 sin2 uC þ ~r22 cos2 uC � 2 ~r12j j sin uC cos uC

~rm
12 ¼ ð~r22 � ~r11Þ sin uC cos uC þ j~r12jðcos2 uC � sin2 uCÞ

ð22Þ
The misalignment angle (uC) is determined using standard
shear and longitudinal compression strengths, SL and XC,
respectively [26]

uC ¼ arctan

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4 SL

X C
þ gL


 �
SL

X C

r

2 SL

X C
þ gL


 �
0
BB@

1
CCA ð23Þ
ε1 ε2 ε

Fig. 7. Scaling of constitutive model for different element sizes.
3.3.2.3. Transverse fracture perpendicular to the mid-plane

of the ply. Transverse matrix cracks perpendicular to
the mid-plane of the ply, i.e. with a0 = 0�, are created by
a combination of in-plane shear stresses and transverse ten-
sile stresses, or in-plane shear stresses and small transverse
compressive stresses. These conditions are represented by
the following failure criteria:

/2þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� gÞ ~r22

Y T
þ g ~r22

Y T


 �2

þ ~r12

SL


 �2
r

if ~r22 P 0

1
SL
hj~r12j þ gL~r22i if ~r22 < 0

8><
>:

ð24Þ
where g is the fracture toughness ratio defined as g ¼ G2þ

G6
.

3.3.2.4. Transverse compressive fracture. The matrix fail-
ure criterion for transverse compressive stresses consists
of a quadratic interaction between the effective shear stres-
ses acting on the fracture plane
/2� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~sT

eff

ST

� �2

þ ~sL
eff

SL

� �2
s

if ~r22 < 0 ð25Þ

where the effective stresses ~sT
eff and ~sL

eff are computed as [26]

~sT
eff ¼ �~r22 cosða0Þ sinða0Þ � gT cosða0Þ cosðhsÞ

� �� �
~sL

eff ¼ cosða0Þ j~r12j þ gL~r22 cosða0Þ sinðhsÞ
� �� � ð26Þ

with gT ¼ �1
tanð2a0Þ and hs ¼ arctan �j~r12j

~r22 sinða0Þ


 �
.

3.3.3. Damage evolution laws and numerical implementation

Strain-softening constitutive models that do not take
into account the finite element discretization produce
results that are mesh-dependent, i.e. the solution is non-
objective with respect to the mesh refinement and the com-
puted energy dissipated decreases with a reduction of the
element size [42,43]. An effective solution to assure objec-
tive solutions consists of using a characteristic length of
the finite elements (l*) in the definition of the constitutive
model [42]. As schematically shown in Fig. 7, the post-peak
response of the material is scaled as a function of the ele-
ment size to keep the computed energy dissipation indepen-
dent of the size of the element, and equal to the material
fracture energy.

The energetic regularization of the model proposed
requires the fracture energies associated with the four frac-
ture planes shown in Fig. 6. These fracture energies were
measured in the experimental program and are used in
the damage evolution laws.

The exponential damage evolution laws proposed by the
authors [19,39,44] are expressed in the following general
form:

dM ¼ 1� 1

fN ðrN Þ
exp AM ½1� fN ðrN Þ�f gf ðrKÞ ð27Þ

where the function fN(rN) is selected to force the softening
of the constitutive relation and it is taken as being indepen-
dent of the material. The term f(rK) represents the coupling
factor between damage laws and elastic threshold domains.
The specific damage evolution laws for each damage vari-
able are presented in [19,39–44].

The regularization of the energy dissipated is performed
by integrating the rate of energy dissipation for each failure



Fig. 9. Load–displacement relation predicted using the model proposed.

Fig. 10. Load–displacement relation predicted using the non-adjusted
model.
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mode. The energy dissipated in each failure mode must be
independent of the element size, and must be equal to the
fracture energy measured in the experimentsZ 1

1

oG
odM

odM

orM
drM ¼

GM

l�
; M ¼ 1þ; 1�; 2þ; 2�; 6 ð28Þ

Using (27) in (28), it is possible to numerically integrate the
resulting equation and calculate the parameters AM that as-
sure a mesh-independent solution [19].

The constitutive model was implemented in the ABA-
QUS Finite Element (FE) code [45] as a user-written
UMAT subroutine.

3.3.4. Mesh objectivity and unidirectional notched specimen

The mesh objectivity of the model proposed is illustrated
by simulating the response of a notched [90]24 CFRP lam-
inate loaded in tension. The specimen simulated is 150 mm
long, 12 mm wide, 3 mm thick, and contains a central cir-
cular notch with a diameter of 6 mm. The properties used
are reported in Tables 1–3.

Two FE models with different mesh refinements and
using the damage model outlined in the previous sections
were created. Models 1 and 2 use, respectively, 6 and 20 ele-
ments along the fracture plane. Only one-half of the spec-
imen width is modeled. The details of the two meshes are
shown in Fig. 8.

Fig. 9 shows the load–displacement relation predicted
using the constitutive model proposed. It is observed that
the solution is independent of the mesh refinement.

In order to demonstrate the error introduced by not
accounting for element size, two analyses with different lev-
els of mesh refinement were also conducted with a constitu-
tive model that is not adjusted using Eq. (28). Instead, a
constant softening parameter A2+ = 1.5 is used, indepen-
dently of the mesh refinement. The load–displacement rela-
tion predicted by this model is shown in Fig. 10. It is clear
from this figure that the maximum load and energy dissipa-
tion predicted are a function of the refinement of the mesh.

3.3.5. Quasi-isotropic open hole tension specimens

Finite element models of all OHT specimens shown in
the test matrix presented in Section 2 were created using
Fig. 8. Different mesh refinements: (a) mesh 1; (b) mesh 2.
ABAQUS [45] four-node S4 shell elements. The difference
between the working and reference temperatures used to
calculate the residual thermal stresses was �155 �C. An
implicit dynamic analysis was subsequently performed,
and the loading rate used in the experiments, 2 mm/min,
was also applied to the numerical models. The use of an
implicit dynamic finite element model enables the predic-
tion of the load drop that occurs when the specimens fail
catastrophically. The material properties used are pre-
sented in Tables 1–5.

Delamination is not simulated by the model. As
explained by Green at al. [4], delamination is the driving
failure mechanism for ply-blocked laminates, but not for
sublaminate-level scaled laminates, such as those used in
this work. The simulation of delamination is required for
ply-blocked laminates, and can be performed using cohe-
sive elements connecting several shell elements that repre-
sent the layers [46].

The models simulate the fracture process from the onset
of damage up to structural collapse. Fig. 11 shows the evo-
lution of fiber fracture predicted in the top 0� ply, as well



Fig. 11. Evolution of fiber fracture in the top 0� ply for the specimen
OHT9.

Table 8
Comparison between experimental and numerical failure stresses (MPa)

Hole diameter (mm) r1, experimental r1, numerical Error (%)

2 555.7 553.6 �0.4
4 480.6 463.0 �3.7
6 438.7 430.0 �2.0
8 375.7 415.0 +10.5

10 373.7 405.6 +8.5
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the plane of localized deformation (fracture plane) for
specimen configuration OHT9.

Fig. 12 shows the relation between the applied remote
stress and the longitudinal deformation measured using
the strain gages and the corresponding numerical predic-
tions in the specimen OHT6. The numerical results corre-
Fig. 12. Experimental and numerical results- specimen OHT6, strain
gages SG2 and SG3.
spond to the averaged strain calculated in the group of
elements whose position and total area correspond approx-
imately to the area where the strain gages were bonded to
the specimen. The location of the different strain gages is
shown in Fig. 1.

The remote failure stresses measured in the experimental
program and predicted by the numerical model are shown
in Table 8.

From the comparison between the experimental and
numerical results, both in terms of stress–strain relations
and failure stresses, it can be concluded that the model is
capable of predicting with good accuracy the response of
all OHT specimens that were tested.

3.4. Comparison of approaches

The four methods previously described, i.e. strength of
materials, LEFM-scaled, LEFM-inherent flaw model,
point stress model, and continuum damage model were
applied to predict the size effect for the specimens described
in Section 2.2.

Eq. (7) provides the LEFM-scaled prediction for the
notched strength of the laminate when all the in-plane
dimensions are scaled. The average failure stress measured
in the specimens with a hole diameter of 6 mm was used in
the LEFM model to predict the strength of the specimens
with different geometries.

Eq. (11) provides the LEFM-inherent flaw model pre-
diction of the notched strength. The specimen with a
6 mm hole diameter is used to calculate the length of the
inherent flaw. Using the measured mean failure stress in
Eq. (11), the length of the inherent flaw is calculated as
a = 1.28 mm.

The point-stress prediction of the size effect is performed
using Eq. (12). The characteristic distance of 0.75 mm was
obtained by using the measured mean failure stress in the
specimen with a 6 mm hole diameter. This value of the
characteristic distance is used to predict the strength of
the other specimens.

The predictions of the normalized strength as a function
of the hole diameter obtained using the different models are
shown in Fig. 13.

It can be observed that both the point stress and LEFM-
IFM models can predict with reasonable accuracy the size
effect law of notched composite laminates. The point stress
and inherent flaw models are particularly accurate for spec-
imens with hole diameters close to the diameter used to cal-
culate the characteristic distance (PSM) and the length of



Fig. 13. Predictions of size effects in CFRP plates with w/d = 6.
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the inherent flaw. For specimens with small hole diameters,
the predictions lose accuracy. Therefore, to accurately pre-
dict the notched strength of laminates these models require
the calculation of the characteristic distance and length of
inherent flaw for different geometries, and the definition
of an extrapolation procedure to define the values of these
parameters for other geometries [18]. It should also be
noted that the basic equation used in the inherent flaw
model, Eq. (11), is only valid when finite width effects are
negligible, which is the case of the specimens tested. For
smaller ratios between the specimen width and hole diam-
eter, the inherent flaw model should be modified.

The continuum damage model can predict the size effect
law observed in the experiments, especially for specimens
with hole diameters smaller than 6 mm. Unlike the point
stress and inherent flaw models, the continuum damage
model does not require any adjustment parameter and only
uses material properties that are measured at the ply level
as well as the fracture energies.

Fig. 13 indicates that the use of the LEFM-scaled model
results in accurate predictions for hole sizes between 6 mm
and 10 mm. However, the strength is overpredicted for
small hole diameters. For small specimens, the damaged
region in the vicinity of the hole cannot be considered to
be negligible when compared with the characteristic dimen-
sions of the specimen, and LEFM is not applicable.

LEFM-scaled predictions are also inaccurate for large
specimens because the notched strengths of those speci-
mens tend to a constant value [4]. Bažant [15] relates this
asymptotic structural response to the invariance of the size
of the fracture process zone when the characteristic dimen-
sions of large specimens are increased. It should also be
noted that the LEFM predictions based on scaled speci-
mens always result in a line with a �1/2 slope that passes
through the baseline point (Fig. 13). This means that the
use of a small hole diameter as the baseline point would
result in severe underpredictions of the notched strength
of larger specimens.
The maximum stress criterion for longitudinal failure is
unable to predict size effects and always underpredicts the
strength of notched laminates. For a hole diameter of
2 mm, the application of the maximum stress criterion
results in an error of �49.1%. The error associated with
the strength of materials approach is even larger when
using a failure criterion for transverse (matrix) cracking,
which occurs before fiber fracture, or failure criteria that
are unable to distinguish fiber and matrix failure modes.

4. Conclusions

The size effect in notched IM7-8552 CFRP was identified
and quantified in an experimental program. The acoustic
emission results show that final fracture is preceded by a pro-
cess of accumulation of non-critical damage mechanisms.

By comparing the experimental data with the different
models that are commonly used for the strength prediction
of composites, it can be concluded that fiber-based failure
criteria (strength of materials approach) cannot predict size
effects. In addition, the strength of materials approach
always underpredicts the strength of notched composites,
with errors as high as �49.1% for a specimen with a
2 mm hole diameter.

The Linear Elastic Fracture Mechanics approach using
a hole diameter of 6 mm for calibration predicts the size
effect accurately for specimens with hole diameters between
6 mm and 10 mm. However, Linear Elastic Fracture
Mechanics should not be used for the strength prediction
of specimens with hole diameters equal to or less than
2 mm, or for larger specimens whose failure stresses tend
to a constant value.

The point stress and inherent flaw models are simple
approaches that do not require complex FE implementa-
tions yet provide reasonable predictions for the range of
hole diameters tested. However, the accuracy of these mod-
els relies upon the measurement of the characteristic dis-
tance and length of the inherent flaw for each lay-up and
stacking sequence.

For the problems selected, the continuum damage
model proposed predicts with good accuracy hole size
effects in composite laminates subjected to tension. The
model requires material properties that are measured at
the ply level and fracture energies that are measured using
both standard test methods and novel compact tension and
compact compression test methods. The continuum dam-
age models provides not only the final failure load, but also
information concerning the integrity of the material during
the load history. Furthermore, the finite element-based
damage model can be applied to structures and compo-
nents of arbitrary configurations where analytical solutions
could not be developed.
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Abstract 
In this article, finite element analyses of mechanically fastened double-lap joints in carbon/epoxy 
laminates are performed using a progressive damage model available in the commercial software 
ABAQUS.  An alternative damage model, implemented into a VUMAT user subroutine, is also 
presented.  Two failure modes are considered: catastrophic net-section tension-failure and non-
catastrophic accumulation of bearing damage.  A three-dimensional mesh is used for the analysis and in 
addition to results for static implicit analysis; a method for explicit simulation of quasi-static tests is 
presented.  The simulation results are compared with experimental data.  By comparison of the two 
damage models for the tension-failure simulation, it can be shown that the shape of the damage evolution 
law for fiber-tension damage is perhaps more critical than the fracture energy value.  Results for 
simulation of bearing damage using the commercial damage model are presented and some limitations of 
the model are discussed. 

1 Introduction 
With the increasing use of fiber-reinforced plastics (FRPs) in aerospace structures, the 
analysis of mechanically fastened joints in composite materials has become a key aspect 
in the design process.  It is well known that mechanically fastened joints perform better 
in metals than they do in composite structures.  The joint efficiency in a metal structure 
is 70% - 80% compared to 40% - 50% in a composite [1].  Some reasons for the 
relatively low performance of bolted composite joints are: the brittleness of the 
composite material, which allows little stress relief around the loaded hole; material 
anisotropy, leading to high stress concentrations; and low through-thickness strength of 
classic unidirectional laminates, causing interlaminar delamination.  Despite these 
disadvantages, mechanically fastened composite joints are widely used, since they 
provide a fast and efficient way of substructure assembly.  Due to the complex failure 
mechanisms, their design however relies heavily on experiments combined with semi-
analytical methods [2].  If it is possible to obtain part of the mechanical properties 
needed during the design phase via numerical analysis, significant cost savings can be 
achieved.  Analysis using progressive damage models, able to capture the physics of the 
failure mechanisms occurring at damage initiation and damage evolution leading to 
ultimate failure has therefore received significant attention in recent years. 
In general, two-dimensional finite element modelling is sufficient for the majority of 
linear composite laminate analysis.  While this is computational efficient and preferable 
for most applications, a three-dimensional model may be suited better for the analysis of 
a bolted composite joint in a quasi-isotropic laminate.  In a 3D-model, cohesive zone 
elements can be included to capture delamination failure; unsymmetrical loading of the 
bolt hole (single-lap joints) can be considered and through-thickness stresses (clamping 
forces) which are known to have a significant effect on the initiation of bearing damage 
may be considered [3]. 



2 Progressive Damage Models for Unidirectional FRP Laminates 
Two progressive damage models for FRP unidirectional laminates are applied in the 
present work.  The first model recently became available in the commercial finite 
element code ABAQUS/Standard 6.6.1 and ABAQUS/Explicit 6.7.1, and will therefore 
be referred to as the Abaqus-Model.  The Hashin-criteria is used for damage initiation in 
this model [4],[5].  The influence of damage on the constitutive material model is based 
on the work of Matzenmiller et al. [6] and damage evolution for all failure modes is 
governed by a simple linear formulation, used by Camanho and Davila for cohesive 
elements [7].  A detailed description of the Abaqus-Model, including its numerical 
implementation, is presented in [8].  An alternative damage model, based on the work of 
Maimi et al. [9] is also used in this study.  The model can be used for finite element 
analysis in Abaqus/Explicit via a VUMAT user subroutine and will therefore be 
referred to as the VUMAT-Model.  Maimi applies a combination of the LaRC03 and 
LaRC04 criteria for damage initiation [10],[11].  Rather than using linear softening, 
exponential damage evolution laws are applied to describe the softening response for all 
failure modes except fiber tension.  For unidirectional carbon/epoxy laminates, such as 
the material used in this study, the propagation of a crack perpendicular to the fiber-
direction under tensile loading can be divided into two phases.  An initial and rather 
brittle fiber-matrix failure mechanism, followed by a tougher fiber-bridging and fiber 
pull-out phase acting at a lower stress level [12].  To account for the different damage 
mechanisms, a linear-exponential law is therefore used for the fiber-tension mode 
(Figure 1, b).  For both models, the area under the stress-strain curve is equal to the 
dissipated fracture energy divided by a characteristic length of the finite element.  
References [8] and [9] provide further information on the determination of the 
characteristic element length.  In case of the VUMAT-Model, the fracture toughness 
determined for fiber-tensile fracture (Table 2) is divided in two parts, associated with 
the linear and exponential softening law.  In addition to the tensile strength TX , a value 
representing the fiber pull-out strength POX  must be specified for the VUMAT-model. 
 

  
(a) Abaqus-model [8] (b) VUMAT-model [9] 

Figure 1. Damage evolution laws for fiber-tension 

3 Experiments 
Two double-shear bolted joint specimens tested in the context of developing a design 
methodology for mechanically fastened composite joints [2] were selected in this study.  
The specimen geometry and dimensions are shown in Figure 2 and were designed to 
either promote pure tensile- or bearing-failure.  Both specimens were made of UD 
carbon/epoxy prepreg Hexcel IM7-8552 with a quasi-isotropic lay-up of 



[90/0/+45/-45]4s.  A 6 mm steel bolt was used and a washer with an outer-diameter of 
12 mm was placed on either side of the laminate.  The torque applied to the bolt 
corresponds to a finger-tight assembly.  Surface strain was measured according to the 
strain gauge positions specified in Figure 2.  Both specimens were tested in a 
conventional load frame at a quasi-static displacement-rate of 2 mm/min. 
 

        

Failure Mode t l w d e l 1 l 2 
        
        

Bearing 3 215 36 6 18 9 50 
Tension 3 200 12 6 24 15 50 

         

Figure 2. Specimen geometry (dimensions in mm) 

4 FE Model 
The finite element model used for both specimen types will be explained on the basis of 
the tension failure specimen shown in Figure 3.  For the bearing failure specimen a 
similar mesh was used.  Due to the lay-up symmetry, only half of the laminate was 
modelled and symmetry boundary conditions were applied at the laminate symmetry 
plane.  One element per ply was used for the laminate mesh, which was divided into a 
coarse mesh area away from the hole and a refined mesh area around the hole and in the 
direction of loading.  Both mesh regions are connected via a TIE constraint which is a 
convenient way for mesh transition as opposed to a paved mesh or multi-point 
constraint (MPC).  In case of the bolt, only the length of the shaft in contact with the 
hole was modelled.  Similar symmetry boundary conditions were applied to the nodes 
lying in the laminate symmetry plane.  The washer is accounted for by a distributed load 
corresponding to the bolt torque and applied to a surface approximately equal to the 
surface area of the washer.  Strain in the loading direction  is obtained from two element 
sets in the first layer of elements, representing the 90° outer-ply, at the strain gauge 
position of the test specimen (Figure 2).  Although not applied in the present 
simulations, the 3D finite element mesh was developed for the use of cohesive zone 
delamination elements and a full 3D-formulation of the VUMAT damage model, which 
is yet to be implemented into an Abaqus subroutine.  For the Abaqus-Model, where two 
formulations of the Hashin-criteria are available, the formulation proposed by Hashin 
and Rotem was selected [4].  The in-situ effect was considered for both damage models.  
It is characterised by higher transverse tensile and shear strengths for a ply constrained 
by plies with different fiber orientations, compared to the strengths of the same ply in a 
unidirectional laminate [13].  For the tension-failure specimen, simulations were 
conducted using the implicit and explicit Abaqus-model as well as the VUMAT-model.  
The bearing failure specimen was simulated using the implicit and explicit Abaqus-
model.  Depending on the damage model and solver, different elements were used for 
the different regions of the finite element model.  The selected elements are summarised 
in Table 1 where SC8R stands for a reduced integration continuum shell element, 
similar to a standard solid but with a kinematic and a constitutive behaviour similar to a 
conventional shell.  The Abaqus-Model is limited to elements with plane-stress 
formulation, therefore only the SC8R element can be used in a 3D-mesh.  C3D8 and 
C3D8R represent standard solid elements in a fully integrated or reduced integration 



formulation, respectively.  For reduced integration elements, default hourglass control 
parameters were selected.  In case of the implicit Abaqus-model, viscous regularisation 
(VR) had to be used to obtain a converging solution.  The VR-parameters were selected 
according to a similar example given in [8]. 

Table 1. Finite element selection 
      

Solver Mesh Area 
Type Version 

Damage 
Model Laminate Fine Laminate Coarse Bolt 

      
      

Abaqus/Standard 6.6.1 Abaqus SC8R C3D8 C3D8 
Abaqus/Explicit 6.7.1 Abaqus SC8R C3D8R C3D8R 
Abaqus/Explicit 6.6.1 VUMAT C3D8R C3D8R C3D8R 
      

 
The joint is loaded via a velocity boundary condition applied to a selected node-set of 
the bolt mesh.  In case of the implicit Abaqus-model, this velocity corresponds to the 
actual test speed.  To obtain a simulation time suited for an explicit simulation, two 
modifications were applied to the explicit model.  The test speed was increased by a 
factor of 1000 and the mass density was scaled by a factor of 100, resulting in a 10-fold 
increase of the stable time increment. 
 

 
Figure 3. Finite element model of tension failure specimen 

To evaluate if the modified FE-model produces an appropriate quasi-static response, the 
energy balance was studied [14]: 
 

 .constEEEEEE TOTALWKEFDVI ==−+++  (4.1)
 

IE  is the internal energy, VE  is the energy absorbed by viscous dissipation, FDE  is the 
energy absorbed by frictional dissipation, KEE  is the kinetic energy, WE  is the work of 
external forces and TOTALE  is the total energy in the system.  For a quasi-static analysis, 

WE  should be approximately equal to IE , while as VE , FDE , KEE  and TOTALE  should be 
near zero.  According to [14] however, a 5% to 10% value of the kinetic energy 
compared to the internal energy is acceptable.  A graphical representation of the energy-
balance is illustrated in Figure 4.  With the exception of a slight increase in the total 
energy TOTALE , the above conditions for a quasi-static analysis hold for the entire 
duration of the simulation.  The total energy increase prior to ultimate failure is caused 
by an increase of VE  and AE .  These two energies are introduced to stabilise the 



element during damage evolution.  As they remain small compared to IE  and WE , it 
was concluded that the modifications to the explicit model are valid and the simulation 
is in fact representing a quasi-static test. 
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Figure 4. Energy balance, tension-failure simulation (VUMAT-model) 

The material properties used for both progressive damage models are summarised in 
Table 2.  Elastic and unidirectional ply strengths can be obtained from standard test 
methods and the in-situ ply strengths can be calculated according to [13].  For the 
fracture energies, a test standard exists only for matrix tension [15].  The values for 
tensile and compressive fiber fracture, can be obtained from compact tension (CT) and 
compact compression (CC) tests as proposed by Pinho et al. [16].  Matrix compression 
fracture energy can be obtained from mode II end-notched flexure tests (ENF) and a 
formulation for −2G  specified in [9].  According to this formulation, the value depends 
on the laminate stacking configuration.  In the present study the value for a strongly 
confined laminate is used.  The additional parameters used for the VUMAT-model are 
associated with the different damage evolution law (compare Figure 1, b) and since the 
LaRC damage initiation criteria considers the fracture angle for compressive transverse 
load cases, a representative fracture angle α  must also be given. 

Table 2. IM7-8552 material properties 
(a) Elastic ply properties (b) UD ply strength (c) In-situ ply strength [MPa] 

 

   

1E  171.42 GPa 

32 EE =  9.08 GPa 

1312 GG =  5.29 GPa 

23G  3.98 GPa 

1312 νν =  0.32 - 

23ν  0.5 - 
   

 

   

TX  2226.2 MPa 
CX  1200.1 MPa 

T
udY  62.3 MPa 
CY  199.8 MPa 
L
udS  92.3 MPa 

   

 

   

Ply configuration T
isY  L

isS  
   
   

thin outer 101.4 107.0 
thin embedded 160.2 130.2 
thin embedded (2t) 113.3 107.0 
   

(d) Fracture energies [kJ/m²] (e) Additional VUMAT-model properties 
   

fiber tension +1G  81.5 
fiber compression −1G  106.5 
matrix tension +2G  0.2774 
matrix compression −2G  5.62 
    

    

fiber pull-out strength POX  232.3 MPa 
fracture angle α  53 ° 

+1G , linear softening LG +1  31.5 kJ/m² 

+1G , exponential softening EG +1  50.0 kJ/m² 
    



5 Simulation Results 

5.1 Tension-failure simulation 

The maximum load, maxP , obtained from the simulations and experiment, is summarised 
in Table 3 and Figure 5 shows the load-strain response at strain gauge position 1 and 2.  
It can be seen that both simulations using the Abaqus-model significantly overestimate 
the ultimate load while as the results of the VUMAT-model correlate well with the 
mean average load maximum obtained from the experiment.  Another difference 
between the simulation results can be noticed when plotting the fiber damage parameter 
for a 0°-ply (Figure 6).  For both Abaqus-model simulations, the crack propagates at an 
angle of about 45° to the fiber-direction and hence follows the matrix damage 
developing in the neighbouring 45°-ply.  The crack in the VUMAT-model localises in a 
plane perpendicular to the fibers, as observed in the experiment. 
It should be noted that various damping mechanisms, such as mass- or stiffness-
proportional Rayleigh-damping and bulk viscosity, exist for the Abaqus-model while as 
these mechanisms did not have a major effect on the user material specified in the 
VUMAT subroutine.  Therefore oscillations measured at strain gauge 1 could not be 
avoided in this case. 

Table 3. Maximum load, tension failure specimen 
   

 maxP  [kN]  
   
   

Experiment (mean average) 9.477  
 (minimum) 9.232 (-2.6%) 
 (maximum) 10.135 (+6.9%) 
   
   

Abaqus Model, implicit 12.833 (+35.4%) 
Abaqus Model, explicit 13.122 (+38.5%) 
   
   

VUMAT Model 9.454 (-0.2%) 
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(a) Strain gauge 1 (b) Strain gauge 2 

Figure 5. Load-strain response, tension-failure specimen  

 



(a) Abaqus-model, implicit static (b) Abaqus-model, explicit 
  
Note: For the Abaqus-model, a separate damage 

parameter exists for fiber-tension and fiber-
compression damage.  In case of the VUMAT-
model, fiber-tension and fiber-compression 
damage are combined in one parameter.  
Therefore, diagram (c) also shows fiber-
compression damage at the bolt-hole contact 
interface. 

(c) VUMAT-model 

Figure 6. Fiber damage in layer 2 (0°) at maximum load, tension failure specimen 

5.2 Bearing-failure simulation 

Other than in the case of the tension-failure specimen, where ultimate failure is clearly 
defined by the maximum load, bearing-failure is a non-catastrophic damage mode, 
characterised by a progressive accumulation of damage and permanent hole deformation 
[2].  As a result, different definitions may be used for defining bearing strength such as 
the onset of nonlinearity or the bearing strength at 2% bearing strain offset.  Figure 7 (a) 
shows the load-strain response obtained from simulation and a representative 
experiment at strain gauge position 1.  Diagram (b) illustrates the bearing stress-bearing 
strain curve as defined by the ASTM test method [17].  The difference between the 
initial bearing stress slope of simulation and experiment can be explained by the 
different method of obtaining the hole elongation.  In case of the simulation, the 
elongation was measured directly on the hole, while as for the test a LVDT was attached 
to the test rig and laminate, similar to the illustration in Fig. 10 (a) of [17]. 
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(a) Load-strain response at strain gauge 1 (b) Bearing stress – bearing strain 

Figure 7. Load-strain and bearing stress-bearing strain response 



Table 4 summarises the bearing strengths defined at the onset of nonlinearity br
onlσ  and 

at 2% bearing strain offset br
off%2σ  for the implicit and explicit Abaqus-model simulation 

and the experiment.  It is clear from the experimental results that the 2% offset 
definition is associated with significant data scatter which complicates a comparison 
between simulation and experiment.  It was shown by Camanho and Lambert that 
damage at 2% strain offset has progressed to a state of through-the-thickness cracks 
spanning several plies [2].  This damage state can not be captured by the present finite 
element model and therefore the onset of nonlinearity (at 5% decrease of the initial 
chord modulus), is used for a comparison of simulation and experiment rather than the 
2% offset definition. For both simulations, the predicted bearing strength is below the 
experimental value.  Figure 8 shows the extent of predicted fiber-compression damage 
at 2% offset bearing strength. 

Table 4. Bearing strength 
   

 br
onlσ  [MPa] br

off%2σ  [MPa] 
   
   

Experiment (mean average) 747  870  
 (minimum) 738 (-1.2%) 747 (-14.1%) 
 (maximum) 753 (+0.8%) 958 (+10.1%) 
   
   

Abaqus-model, implicit 645 (-13.6%) 851 (-2.2%) 
Abaqus-model, explicit 610 (-18.3%) 689 (-20.8%) 
   

 

  
(a) Abaqus-model, implicit static (b) Abaqus-model, explicit 

Figure 8. Fiber damage in layer 2 (0°) at 2% offset bearing strength, bearing specimen 

6 Discussion and Conclusion 

6.1 Tension-failure simulation 

In Section 5.1 it was shown that the ultimate load for the tension-failure specimen was 
significantly over-predicted by the Abaqus-model (Table 3).  Since the same material 
properties were used for all simulations and viscous regularisation was not specified for 
the explicit analysis, it is assumed that the difference between the Abaqus- and 
VUMAT-model is associated with the damage evolution law.  It was further noticed 
that the crack for the Abaqus-model develops in a plane inclined at an angle of 45° to 
the fibers.  In an attempt to create a damage evolution shape similar to that used in the 
VUMAT-model, the fracture energy for fiber-tension (compare Table 2, d) was reduced 
by 50%.  With this modification, the over-prediction was reduced to 7.8% for the 
implicit and to 18.5% for the explicit formulation of the Abaqus-model.  Comparing 
Figure 6 and Figure 8, it can be seen that the crack has shifted towards a plane 



perpendicular to the fiber-direction with the improvement most pronounced for the 
implicit model.  It is therefore concluded that the shape of the fiber-tension damage 
evolution law is more critical than the actual fracture toughness value and that the 
formulation chosen in the VUMAT-model is able to represent the damage mechanisms 
occurring in the fiber-tension damage mode. 
 

(a) Abaqus-model, implicit static (b) Abaqus-model, explicit 

Figure 9. Fiber-damage in layer 2 (0°) at maximum load for Abaqus-model with 
modified fracture toughness 

6.2 Bearing-failure simulation 

In Section 5.2 it was shown that conservative results can be obtained for the bearing 
strength at onset of nonlinearity (ONL), using either the implicit or explicit formulation 
of the Abaqus-model (Table 4).  With damage initiation occurring at a similar stress 
level of about 450-460 MPa, the bearing strength results for the ONL-formulation of 
bearing strength were relatively close.  The difference in the nonlinear region of the 
bearing stress curve, comparing the implicit and explicit solution in Figure 7 is not 
entirely understood yet and may partly be attributed to the influence of viscous 
regularisation on the evolution of damage.  As for the tension-failure specimen, viscous 
regularisation had to be used for the implicit static simulation in order to obtain a 
converging solution but was not used in case of the explicit simulations.  Further, it is 
possible that the masses considered in the explicit simulation, and hence the 
modifications as described in Section 4, may have an influence on the fiber-
compression damage mode; although this did not seem to be critical for the tension-
failure simulation.  
It is concluded that the Abaqus-model, using a simple maximum strength criteria and 
linear damage evolution law for fiber-compression, is able to predict a lower bound for 
ONL bearing strength.  In reality however, the damage mechanism for fiber-
compression is more complicated with fiber-kinking occurring in the 0° plies.  Further, 
the model can not account for the stabilising-effect of through-thickness stresses [3], 
which is not critical if a relatively low level of clamping pressure is used, but may lead 
to a significant under-prediction at higher torque-levels. 
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A three-dimensional damage model for transversely

isotropic composite laminates
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Abstract

This paper proposes a fully three-dimensional continuum damage model, developed at the sub-ply
level, to predict in an integrated way both the intralaminar and the interlaminar failure mechanisms
that occur in laminated fiber-reinforced polymer composites. The constitutive model is based on the
assumption that the composite material is transversely isotropic, and accounts for the effects of crack
closure under load reversal cycles. The damage model is implemented in an implicit finite element
code taking into account the requirement to ensure a mesh-independent computation of the dissipated
energy. The comparison between the model predictions and published experimental data indicates
that the model can accurately predict the effects of transverse matrix cracks on the residual stiffness
of quasi-isotropic laminates, the interaction between transverse matrix cracks and delamination, and
final failure of the laminate.

Key words: Fracture, Damage Mechanics, FEA.

[Table 1 about here.]1

1 Introduction2

It has been widely recognized that one of the most significant barriers to the increased use of3

composite materials is the inability to predict accurately structural failure [1]. The prediction4

of structural failure in laminate composites is particularly challenging when both delamination5

and intraply failure mechanisms, such as matrix cracking or fiber failure, contribute to the6

fracture process.7

Delamination is normally simulated using methods based on Linear-Elastic Fracture Mechan-8

ics, such as the Virtual Crack Closure Technique [2], or using cohesive formulations [3]-[9]. The9

onset of intralaminar failure mechanisms is normally predicted using ply-based failure criteria10
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[10]-[15]. Generally, failure criteria alone are unable to predict the collapse of composite struc-11

tures. To predict failure initiation, propagation and final collapse it is necessary to combine12

the ply-based failure criteria with appropriate damage models. When the laminate is uniformly13

stressed, and when transverse matrix cracks are the main failure mechanism, it is possible to14

use analytical or semi-analytical solutions to relate the applied load to the residual stiffness and15

strength of the laminate [16]-[21]. However, the simulation of the propagation of intralaminar16

failure mechanisms in composite structures with complex geometries requires models based on17

the formalism of continuum damage mechanics [22]-[30].18

There are several relevant structural applications of laminated composites where both delami-19

nation and ply failure mechanisms are relevant, interacting, energy dissipation mechanisms. For20

example, in composites subjected to low velocity impact, in skin-stiffener terminations or in21

ply-scaled notched laminates. The approach normally used to simulate both delamination and22

ply failure is to combine cohesive elements that simulate delamination with continuum damage23

models that simulate ply damage [31]-[33]. Although this mesomechanical approach has proved24

to be successful for some structural configurations [31], there are some fundamental problems25

that prevent the general application of this methodology that uses two different kinematic repre-26

sentations for interlaminar and intralaminar failure mechanisms. For example, in the numerical27

simulation of the interaction between transverse matrix cracks and delamination it is necessary28

to capture the high stresses at the tip of the transverse crack. Using a mesomechanical model,29

it is not possible to capture this interaction because the elements where the transverse crack30

is predicted soften without being able to accurately capture the stress field at the interface.31

Furthermore, even if strain-softening constitutive models are used in mesomechanical models32

to predict transverse matrix cracking in multidirectional laminates, the finite element where33

transverse cracking is predicted does not unload the adjoining elements that represent the same34

ply, and therefore is unable to represent a transverse crack.35

To accurately predict the interaction between intralaminar and interlaminar failure mechanisms36

it is essential to have a good kinematic representation of the different failure mechanisms.37

This has been realized by Wisnom and co-workers [34],[35] in their simulations of fracture of38

notched and unnotched specimens, using cohesive zone models to represent both intralaminar39

and interlaminar failure mechanisms. The cohesive zone models provide an accurate kinematic40

representation that enabled the successful simulation of complex phenomena such as size effects41

in both ply-scaled and sublaminate scaled composite notched specimens [34], and the fracture42

of unnotched scaled quasi-isotropic specimens [35]. Although the use of cohesize zone models43

has proved to be an accurate technology to simulate the interaction between failure mechanisms44

there are two main limitations to its use. The first limitation is the need to know in advance45

the planes of crack propagation. There are several situations where the orientation of the crack46

plane is not know a priori. For example, when a ply is subjected to both transverse compression47

and in-plane shear the fracture plane depends on the relation between these two components48

of the stress tensor [12]. The second limitation to the use of cohesive zone models is the need49

to introduce cohesive finite elements at every single interface where a crack may develop.50

To overcome some of the difficulties in the simulation of the interaction between failure mecha-51

nisms, the objective of this work is to formulate a fully three-dimensional damage model at the52

sub-ply level that is able to represent both interlaminar and intralaminar failure mechanisms53

without previous knowledge of the orientation of the failure planes. The sub-ply level constitu-54

tive model and the corresponding computational implementation are described in the following55

sections. The model is then validated by comparing the numerical predictions with published56
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experimental results.57

2 Damage model for a transversely isotropic laminate58

2.1 Constitutive tensor59

Consider a transversely isotropic material and a vector e1 = {1, 0, 0}T , parallel to the fiber60

direction. In the transversely isotropic plane, orthogonal to e1, there is a set of orthonormal61

vectors {e2, e3} that define a plane where the shear strain γ23 is zero. In order to correctly detect62

crack closure under load reversal cycles a set of ortonormal vectors {e1, e2, e3} are defined.63

Taking ε = {ε11, ε22, ε33, 2ε12, 2ε13, 2ε23}T as the components of the strain tensor in the global64

coordinate system, the relation between the strain tensor in the local and global coordinate65

system is:66





ε

0





= Tε (1)

The transformation matrix T relates the strains in the material coordinate system to the strains67

in the coordinates defined by the vectors {e1, e2, e3}, ε = {ε11, ε22, ε33, γ12, γ13}T . Without loss68

of generality, it is possible to assume that the one direction of the global coordinate system69

coincides with e1. Therefore the transformation matrix can be written as:70

T =




1 0 0 0 0 0

0 cos2 θ sin2 θ 0 0 cos θ sin θ

0 sin2 θ cos2 θ 0 0 − sin θ cos θ

0 0 0 cos θ − sin θ 0

0 0 0 sin θ cos θ 0

0 −2 sin θ cos θ 2 sin θ cos θ 0 0 cos2 θ − sin2 θ




(2)

The angle θ is determined by enforcing that the shear strain γ23 is zero, i.e., tan (−2θ) = −2ε23
ε22−ε33

.71

Having defined the coordinate system that is the basis for the derivation of the the constitutive72

model, it is now necessary to propose a suitable form for the specific free energy. Assuming73

a constant density, the total complementary free energy is given as
∫
V ψdV , where ψ is the74

complementary free energy per unit volume. The proposed definition for the complementary75

free energy per unit volume is:76
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ψ =
σ2

11

2(1− d1)E1

+
1

2E2

(
σ2

22

1− d2

+
σ2

33

1− d3

)
− ν12

E1

(σ22 + σ33) σ11−

−ν23

E2

σ22σ33 +
σ2

12 + σ2
13

2 (1− d6) G12

+ [α11σ11 + α22 (σ22 + σ33)] ∆T+

+ [β11σ11 + β22 (σ22 + σ33)] ∆M

(3)

where α11 and α22 are the coefficients of thermal expansion in the longitudinal and transverse77

direction, respectively. β11 and β22 the coefficients of hygroscopic expansion in the longitudinal78

and transverse direction, respectively. ∆T and ∆M are the differences in temperature and79

moisture content with respect to the corresponding reference values. d1, d2 and d3 are the80

damage variables. The strain tensor is calculated as:81

ε =
∂ψ

∂σ
= H : σ + α∆T + β∆M , with H =

∂2ψ

∂σ
⊗

∂σ
(4)

The compliance tensor, H, relates the elastic strains with the elastic stresses. This tensor82

depends on the value of damage variables. It is assumed that damage is represented by a set83

of variables that affect the longitudinal, the transverse and the shear modulus. The damage84

variables related to longitudinal and transverse directions change when the normal stresses85

switch from positive to negative or vice-versa. The damage variable d1 represents cracks in86

planes normal to the fiber direction, whereas the damage variables d2 represents cracks in87

planes parallel to the fiber direction. The damage variable d6 affect the shear moduli G12 and88

G13. The transverse damage variable is not able to detect, at constitutive level, the directionality89

of cracks. However, the directionality of cracks is detected at macroscopic level as the locus of90

the damaged points. From (4), the compliance tensor is defined as:91

H =




1

(1− d1) E1

−ν12

E1

−ν12

E1

0 0

−ν12

E1

1

(1− d2) E2

−ν23

E2

0 0

−ν12

E1

−ν23

E2

1

(1− d3) E2

0 0

0 0 0
1

(1− d6) G12

0

0 0 0 0
1

(1− d6) G12




(5)

where E1 and E2 are the longitudinal and transverse Young modulus, respectively. ν12 is the92

major Poisson ratio and ν23 is the Poisson ratio in the transverse isotropic plane. G12 is the93

shear modulus. d1, d2 and d3 are the damage variables in the directions defined by the vectors94

(e1, e2, e3). These damage variables depend on the longitudinal (dL±) and transverse (dT±)95

damage variables as:96
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d1 = dL+
〈σ11〉
|σ11| + dL−

〈−σ11〉
|σ11|

d2 = dT+
〈σ22〉
|σ22| + dT−

〈−σ22〉
|σ22|

d3 = dT+
〈σ33〉
|σ33| + dT−

〈−σ33〉
|σ33|

(6)

where 〈x〉 is the McCauley operator defined as 〈x〉 := (x + |x|) /2. The shear damage variable97

is not influenced by the sign of the shear stress components, i.e., d6 = dS. The shear damage98

variable is influenced by the normal stresses that produce friction between the crack faces99

allowing stress transfer and dissipation under shear loads [36]. This effect is neglected in the100

present model.101

It should be noted that the closure effect in the transversely isotropic plane is activated inde-102

pendently in the the directions e2 and e3. Therefore the material becomes orthotropic when103

σ22 has a different sign than that of σ33.104

The coaxially of stresses and strains in the transverse isotropic plane is enforced and the cor-105

respondent shear modulus is evaluated as: G23 = σ33−σ22

2(ε33−ε22)
. If the stresses in the transversely106

isotropic plane have the same sign, and if the damage variables have the same value (d2 = d3),107

the shear modulus is given as: G23 = E2(1−d2)
2[1+ν23(1−d2)]

. It is important to note that, unlike the108

majority of the rotating crack models, this model does not exhibit a negative shear modulus,109

which is a physically inadmissible result [37]. This is due to the fact that the damage is isotropic110

if the transverse stresses have the same sign.111

The stress tensor in the global coordinate system (ς) is calculated as:112

ς = TT





σ

0





(7)

2.2 Dissipation113

The thermodynamic forces YM (M = 1, 2, 3, 6) are calculated as:114

Y1 =
∂ψ

∂d1

=
σ2

11

2 (1− d1)
2 E1

; Y3 =
∂ψ

∂d3

=
σ2

33

2 (1− d3)
2 E2

Y2 =
∂ψ

∂d2

=
σ2

22

2 (1− d2)
2 E2

; Y6 =
∂ψ

∂d6

=
σ2

12 + σ2
13

2 (1− d6)
2 G12

(8)

The rate of dissipation is expressed in terms of the thermodynamic forces and damage variables115

as:116
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Ξ = Y1ḋ1 + Y2ḋ2 + Y3ḋ3 + Y6ḋ6 ≥ 0 (9)

Due the particular form of the complementary free energy selected, it is observed that the117

thermodynamic forces (YM) are always positive. Therefore the condition of positive evolution118

of damage variables (ḋM ≥ 0) ensures a positive energy dissipation. The crack closure effect119

under load reversal cycles does not result in spurious energy dissipation because the conjugated120

thermodynamic forces are zero when such a loading scenario takes place [38].121

2.3 Damage activation functions122

The damage activation functions define the elastic domain under general stress states. The123

elastic domain is defined here by three damage activation functions, that are represented by124

three surfaces in the strain space.125

The selection of the damage activation function depends upon the different failure mechanisms126

of the material system. The main assumption of the present selection of damage activation127

functions is that the shear stresses in the transversely isotropic plane, σ12 and σ13, create128

cracks orientated in a plane with a normal vector in the (e2, e3) plane. This response is typical129

of unidirectional composites in which the fibers enforce the matrix cracks to growth along their130

direction.131

The damage activation functions FN (N = L+, L−, T ) are defined as:132

FL+ = φL+ − rL+ ≤ 0

FL− = φL− − rL− ≤ 0

FT = φT − rT ≤ 0

(10)

where FL+ defines the elastic domain for longitudinal tensile failure, FL− defines the elastic133

domain for longitudinal compressive failure, and FT defines the elastic domain for transverse134

failure.135

The loading functions φN (N = L+, L−, T ) depend on the strain tensor, and on the elastic136

and strength properties. The internal variables rN (N = L+, L−, T ) take an initial value of 1137

when the material is undamaged, and they increase with damage. The internal variables of the138

constitutive model are related to the damage variables dM (M = L+, L−, T+, T−, S) by the139

damage evolution laws.140

2.4 Loading functions141

A simple non interacting maximum strain or stress criteria results in accurate predictions of142

the onset of longitudinal damage of polymer-based composite materials under tensile stresses143

[14],[15]. The maximum strain criterion is used for longitudinal tensile loading:144
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φL+ =
E1

XT

〈ε11〉 (11)

Longitudinal failure of unidirectional composite materials under compressive stresses is a far145

more complex phenomenon. The compressive failure is the result of a complex sequence of146

damage mechanisms that culminate in the formation of a kink band.147

The LaRC03-04 [14],[15] failure criteria postulates that fiber kinking is triggered by onset of148

damage in the matrix. Under this circumstance, the fibers loose their lateral support and149

collapse under the compressive load. The failure load depends on the initial fibre misalignment,150

and on the rotation of the fibers as a function of the applied stresses. In this model a simple151

non-interacting maximum strain is used:152

φL− =
E1

XC

〈−ε11〉 (12)

It is clear that such a simple criterion is unable to account for the effects of the shear stresses153

on fiber kinking. The development of a more accurate failure criterion for three-dimensional154

stress states will be addressed in future work.155

The transverse loading function defines the onset of transverse failure mechanisms. The loading156

function has to match the three uniaxial loads that produce matrix cracking: transverse tension,157

transverse compression and longitudinal-transverse shear. The proposed loading function is:158

φT =

√√√√
〈

YC − YT

YCYT

(σ̃22 + σ̃33) +
1

YCYT

(σ̃22 − σ̃33)
2 +

σ̃2
12 + σ̃2

13

S2
L

〉
(13)

where σ̃ are the effective stresses, calculated using the undamaged stiffness tensor, H−1
0 given159

by (5) with di = 0 (i = 1, 2, 3, 6), as σ̃ = H−1
0 : ε. The transverse loading function has the same160

form as the criteria presented by Christensen [39].161

Figure 1 shows the transverse damage activation function. As previously mentioned, the inter-162

fiber shear stress produce transverse cracks. Therefore, the transverse damage must be activated163

under uniaxial shear loads. Furthermore, experimental results and failure criteria developed164

following the Mohr-Coulomb theory, as such as the Puck [12] and the LaRC [14]-[15] criteria,165

demonstrate that moderate values of transverse compression increase the shear strength. As166

shown in Figure 1 c), this effect is accounted for in the proposed loading function.167

[Fig. 1 about here.]168

2.5 Internal variables169

Neglecting viscous effects, the damage activation functions must be negative. If FN < 0 the170

material is in the elastic regime. When the damage activation criteria is satisfied, FN = 0, it is171

necessary calculate the gradient φ̇N . If φ̇N is negative or zero, the state is one of unloading or172

7



neutral loading, respectively. The different states of the material response are mathematically173

represented by the Kuhn-Tucker conditions, ṙN ≥ 0; FN ≤ 0; ṙNFN = 0. If φ̇N is positive,174

damage increases, and the consistency condition has to be satisfied, i.e., FN = 0 ⇒ ḞN = 0.175

If the internal variables are exclusively dependent on the damage variables, and if the loading176

functions depends on the strain tensor, the constitutive model can be explicitly integrated [40],177

[41]. Applying the consistency condition, the internal variable rT is calculated as:178

rT = max
{
1, max

s=0,t
{φs

T}
}

(14)

The evolution of the longitudinal elastic domain thresholds for tensile or compressive stresses179

are coupled. The elastic domain threshold defines the level of elastic strains that can be attained180

before the accumulation of additional damage.181

Under longitudinal tensile stresses, the fracture plane is generally perpendicular to the fiber182

direction. When reversing the load, the cracks close and can still transfer load. However, the183

broken and misaligned fibers do not carry any additional load. Therefore, the compressive184

stiffness is influenced by longitudinal damage. However, the elastic domain is assumed to remain185

unchanged. Under longitudinal compression, damaged material consisting of broken fibers and186

matrix cracks forms a kink band, and there is not a unique orientation for the damage planes.187

When the loads are reversed, the cracks generated in compression open and the elastic domain188

threshold increases. To represent these phenomena, the evolution of the longitudinal internal189

variables is defined as:190

Tension loading: ṙL+ = φ̇L+ and ṙL− = 0

Compression loading: ṙL− = φ̇L− and ṙL+ =





φ̇L− if rL+ ≤ rL−

0 if rL+ > rL−

The integration of the previous expressions results in:191

rL+ = max
{
1, max

s=0,t

{
φs

L+

}
, max

s=0,t

{
φs

L−
}}

rL− = max
{
1, max

s=0,t

{
φs

L−
}} (15)

2.6 Damage evolution laws192

The definition of the damage evolution laws, which relate the internal variables with the damage193

variables dM(rN), is required to fully define the constitutive model.194

When the material is undamaged, the internal variables rN take the initial value of 1, and195

dM(rN = 1) = 0. Equations (14) and (15) define the evolution of the internal variables ensuring196

that ṙN ≥ 0. As shown in equations (8) and (9), the condition for positive dissipation is197
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satisfied if ḋM ≥ 0. The condition for positive dissipation is automatically fulfilled if the damage198

evolution law satisfies the condition ∂dM/∂rN ≥ 0. When the material is completely damaged,199

a fracture plane is created, the strains are localized in a plane in which rN →∞ and the related200

components of the stiffness tensor are zero, dM(rN →∞) = 1.201

The evolution of internal variables can result in material hardening or softening depending the202

damage law. If the stress-strain response result in a softening relation, the deformations localize203

in a plane, and a localization limiter has to be introduced in the model to correctly compute204

the energy dissipated.205

The procedure followed in this model to ensure a correct computation of the energy dissipated206

is based on the Crack Band Model proposed by Bažant [42]. Using equation (9) it is possible207

calculate the dissipated energy under an uniaxial test as:208

gM =
∫ ∞

0
YM ḋMdt =

∫ ∞

1
YM

∂dM

∂rN

drN =
GM

`
; M = L+, L−, T+, S (16)

where ` is the characteristic length of the finite element, and GM is the associated fracture209

toughness. The fracture toughness GL+ corresponds to a crack that propagates in a plane210

perpendicular to the fiber direction under mode I loading and the fracture toughness GL− is211

related to fibre kinking. There are no standard test methods to measure these properties. How-212

ever, Pinho and co-authors [43] developed new compact-tension (CT) and compact-compression213

(CC) test methods that can be used to measure GL+ and GL−. The fracture toughness GT+214

and GS correspond respectively to matrix cracking for mode I and mode II loading. These215

properties can be measured using standard double-cantilever beam and end-notched flexure216

test specimens.217

If the characteristic element size (`) is greater than a critical value the material response results218

in snap-back, and the energy dissipation would be overpredicted. To prevent this problem, the219

characteristic element size must be lower that a critical value given by:220

` =
2EMGM

X2
M

; M = L+, L−, T+, S (17)

If the element is larger that the maximum size prescribed, and a mesh refinement is unfeasible,221

the snap-back in the constitutive model can be avoided by reducing the corresponding strength222

according to [44]:223

XM =

√
2EMGM

`
; M = L+, L−, T+, S (18)

2.6.1 Transverse tension damage law224

Under transverse tension, damage localizes in a fracture plane without any previous inelastic225

material behavior. The linear softening, or cohesive, law shown in Figure 2a), is proposed.226

[Fig. 2 about here.]227
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For a linear softening law, the stress strain response is given as: σ22 = HT+E2ε22 + Y or228

σ22 = (1− dT+)E2ε22. Using the resulting ε22 in (13) and (14), the damage law is calculated as:229

dT+ = 1−HT+ − 2AT+ (1−HT+) YT

−BT+ +
√

B2
T+ − 4AT+ (CT+ − YT YCr2

T )
(19)

where HT+E2 is the incremental stiffness under uniaxial stress, and the remaining parameters230

are:231

AT+ =
(1 + ν23HT+)2

(1 + ν23)
2

BT+ =
(YC − YT ) (1−HT+ (2ν12ν21 + ν23))

1− ν23 − 2ν12ν21

+ 2
(1 + ν23HT+) ν23 (1−HT+) YT

(1 + ν23)
2

CT+ =

(
ν23 (1−HT+) YT

1 + ν23

)2

− (YC − YT ) (1−HT+) YT (ν23 + 2ν12ν21)

1− ν23 − 2ν12ν21

The parameter HT+ is calculated by applying the crack band model, equation (16):232

HT+ =
Y 2

T `

Y 2
T `− 2GT+E2

≤ 0 (20)

2.6.2 Transverse compression damage law233

The law proposed to simulate damage evolution under transverse compression is shown in234

Figure 2 a), and it is given as:235

dT− = 1−HT− − 2AT− (1−HT−) YC

BT− +
√

B2
T− − 4AT− (CT− − YT YCr2

T )
(21)

where HT−E2 is the incremental stiffness under an uniaxial compression load. HT− defines the236

hardening in the compressive. The parameters AT−, BT− and CT− are determined following237

the procedure outlined in the previous section as:238

AT− =
(1 + ν23HT−)2

(1 + ν23)
2

BT− =
(YC − YT ) (1−HT− (2ν12ν21 + ν23))

1− ν23 − 2ν12ν21

− 2
(1 + ν23HT−) ν23 (1−HT−) YC

(1 + ν23)
2

CT− =

(
ν23 (1−HT−) YC

1 + ν23

)2

+
(YC − YT ) (1−HT−) YC (ν23 + 2ν12ν21)

1− ν23 − 2ν12ν21
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2.6.3 Longitudinal tension damage law239

Crack propagation in the longitudinal direction involves different energy dissipating mecha-240

nisms such as fiber fracture, fiber-matrix pull-out and matrix fracture. When different physical241

mechanisms are involved in crack propagation, a two-part damage evolution law should be used242

[45]. To accurately represent the propagation of longitudinal failure mechanisms, the authors243

have previously proposed a softening law defined by the linear-exponential relation shown in244

Figure 2b) [26], [27]. It is observed in Figure 2b) that the softening response is linear until the245

stress reaches the pull-out stress, XPO, and the corresponding energy dissipation per unit area246

is GL
L+. These material parameters can be measured using a recently proposed analysis method247

for the resistance curve measured in the compact tension test specimens [28].248

As the strains continue to increase, the softening response follows an exponential law and the249

energy dissipated per unit area is GE
L+. The definition of the damage evolution law used here250

is explained in detail in previous papers [26],[27], and the resulting equations are:251

dL+ = (1 + HL)
rL+ − 1

rL+

if rL+ ≤ rF
L+

dL+ = 1− XPO

XT rL+

exp

[
AL+

rF
L+ − rL+

rF
L+

]
if rL+ > rF

L+
(22)

where the parameters HL, rF
L+, dF

1+ and A1+ are defined in [26],[27].252

2.6.4 Longitudinal compression damage law253

The compressive stiffness is influenced by both the damage produced under compression and254

under tension. If the material is damaged in tension and the loads are reversed until the material255

is loaded in compression, the cracks close allowing the stress transfer. Although the cracks256

are closed, the fibers lose the alignment and do not transfer additional stresses. The stiffness257

recovery can be approximated with the parameter A±
L , defined as [26]:258

A±
L ≈ b

VfEf

VmEm + VfEf

≈ b
E1 − E2

E1

(23)

where Vf and Vm are the fiber and matrix volume fraction, respectively. Ef and Em are the259

fiber and matrix Young modulus, respectively. b is and adjustment parameter between 0, if the260

stiffness is completely recovered, and 1, when the stiffness recovery is only due the matrix.261

Under longitudinal compressive stresses the damage variable depends of the damage generated262

under tension and compression as:263

dL− = 1− (1− d∗L−)(1− A±
LdL+) (24)

The damage variable (d∗L−) is assumed to be approximated by an exponential law as:264
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d∗L− = 1− 1

rL−
exp [AL− (1− rL−)] (25)

2.6.5 Shear damage law265

The shear stiffness depends on the longitudinal and transverse damage. It is assumed that if266

material is only damaged longitudinally the shear damage variable takes the same value of that267

of the longitudinal tensile variable (dS = dL+). If the damage is due the transverse damage, the268

damage variable (d∗S) is adjusted with the transverse critical fracture energy in mode II. The269

coupling of both damage variables takes the following form:270

dS = 1− (1− d∗S)(1− dL+) (26)

Under a shear test, the material fails in transverse direction. Although the non-localized damage271

is important in many fiber reinforced plastics, the definition of a constitutive model representing272

distributed damage and plasticity is outside the scope of this paper and will be addressed in273

future work. Therefore, an exponential law that enforce softening of the material response is274

proposed:275

d∗S = 1− 1

rT

exp [AS (1− rT )] (27)

Applying the crack band model, the parameter AS results in:276

AS =
2`S2

L

2G12GS − `S2
L

(28)

2.7 Tangent constitutive tensor and algorithm277

The effective computational implementation of the model in an implicit finite element code278

requires the definition of the tangent stiffness tensor CT:279

dς

dt
= ς̇ = CTε̇ (29)

The first step in the definition of the tangent stiffness tensor is the calculation of the time280

derivative of equation (4):281

σ̇= C̃ε̇ with C̃ = H
−1

(I−M) (30)

where the matrix M is defined as:282
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M =




σ11

(1−d1)2E1

∂d1

∂ε11

σ11

(1−d1)2E1

∂d1

∂ε22

σ11

(1−d1)2E1

∂d1

∂ε33

σ11

(1−d1)2E1

∂d1

∂γ12

σ11

(1−d1)2E1

∂d1

∂γ13

σ22

(1−d2)2E2

∂d2

∂ε11

σ22

(1−d2)2E2

∂d2

∂ε22

σ22

(1−d2)2E2

∂d2

∂ε33

σ22

(1−d2)2E2

∂d2

∂γ12

σ22

(1−d2)2E2

∂d2

∂γ13

σ33

(1−d3)2E2

∂d3

∂ε11

σ33

(1−d3)2E2

∂d3

∂ε22

σ33

(1−d3)2E2

∂d3

∂ε33

σ33

(1−d3)2E2

∂d3

∂γ12

σ33

(1−d3)2E2

∂d3

∂γ13

σ12

(1−d6)2G12

∂d6

∂ε11

σ12

(1−d6)2G12

∂d6

∂ε22

σ12

(1−d6)2G12

∂d6

∂ε33

σ12

(1−d6)2G12

∂d6

∂γ12

σ12

(1−d6)2G12

∂d6

∂γ13

σ13

(1−d6)2G12

∂d6

∂ε11

σ13

(1−d6)2G12

∂d6

∂ε22

σ13

(1−d6)2G12

∂d6

∂ε33

σ13

(1−d6)2G12

∂d6

∂γ12

σ13

(1−d6)2G12

∂d6

∂γ13




Calculating the time derivative of equations (1) and (7) and using equation (30), results in:283

ς̇ = Ṫ
T





σ

0





+ TT



C̃ 0

0 0


 Ṫε + TT



C̃ 0

0 0


 Tε̇ (31)

Consider now a fixed coordinate system that coincides, at given instant, with the moving284

coordinate system. In this fixed coordinate system the transformation matrix is the identity285

T = I, and its time derivative is: Ṫ = ∂T
∂ε23

∣∣∣
ε23=0

ε̇23 = ∂T
∂θ

∣∣∣
θ=0

∂θ
∂ε23

∣∣∣
ε23=0

ε̇23, i.e.:286

Ṫ =
ε̇23

ε22 − ε33




0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 1 0 0

0 −2 2 0 0 0




(32)

Using (32) in (31), the tangent stiffness matrix can be expressed as a function of the matrix Ĉ:287

Ĉ =



C̃ c

0 σ22−σ33

2(ε22−ε33)


 , with c = 1

ε22−ε33




C̃15ε12 − C̃14ε13

C̃25ε12 − C̃24ε13

C̃35ε12 − C̃34ε13

C̃45ε12 − C̃44ε13 + σ13/2

C̃55ε12 − C̃54ε13 − σ12/2




(33)

To calculate the tangent stiffness tensor (ς̇ = CTε̇) in the global coordinate system it is necessary288

to rotate the matrix Ĉ using the angle θ as: CT = TTĈT. The constitutive model results in an289

explicit formulation where no iterations are required to update the state variables. The model290

developed was implemented in ABAQUS non-linear finite element code [46] using a user-defined291

subroutine UMAT, according to the following algorithm:292
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1 - Strain tensor at current time t εt

2 - Main transverse direction θt

3 - Main transverse strains





εt

0





= Ttεt

4 - Effective stress tensor σ̃t = H−1
0 εt

5 - Loading functions φt
M (σ̃t)

6 - Internal variables rt
M (rt-1

M , φt
M)

7 - Damage variables dt
M (rt

M)

8 - Nominal stress tensor σt = (Ht)
−1

εt

9 - Rotated nominal stress tensor ςt = (Tt)
T





σt

0





10 - Tangent constitutive tensor Ct
T = (Tt)

T
ĈtTt

293

3 Model verification294

To evaluate the accuracy of the model proposed, the numerical predictions are compared with295

published experimental results. The example selected for the assessment of the accuracy of296

the model corresponds to the prediction of the onset and accumulation of transverse matrix297

cracks and of final failure of multidirectional laminates. This is a relevant scenario because the298

transverse matrix cracks that may develop at low strains affect the thermomechanical properties299

of the laminate, create paths for fuel leakage, and may trigger other failure mechanisms.300

Several analytical solutions have been proposed to predict the effects of transverse matrix301

cracks in the thermomechanical properties of multidirectional laminates [48] -[55]. Generally,302

these analytical solutions are valid for simple boundary conditions and applied loads, and303

for situations where the transverse matrix cracks accumulate in a central 90◦ ply. When the304

cracked 90◦ ply is placed at the surface of the laminate the analytical solutions are in general305

no longer valid. In addition, there are situations where delamination develops, either preceding306

transverse matrix cracks or at high densities of such cracks [56]. The model proposed here is307

able to simulate the different failure scenarios where the analytical solutions are no longer valid.308

3.1 Statistical distribution of properties309

The stress field of an unnotched laminate is uniform, except in regions close to the free edge310

where a three-dimensional stress field occurs. This means that the damage activation functions311

are satisfied in more than one point simultaneously in the numerical implementation of the312
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model. To overcome this difficulty, and to enforce the localization of damage in a plane, a313

random strength field is created.314

The inclusion of random material properties in the finite element mesh is an active research topic315

[57]-[58]. The definition of random material properties must take into account the characteristic316

length of the finite element and should be applied to all material properties, not only to the mean317

and to the standard deviation, but even to the density function itself. The topic of statistical318

finite element analysis is outside the scope of this paper. Therefore, the application of random319

material properties is done simply by defining a random strength with a normal distribution.320

A simple way to define a normal distribution is by means of the Box-Muller algorithm [59].321

The Box-Muller algorithm states that if a and b are uniformly distributed numbers in (0,1] a322

standard normally distributed random variable is X given as: X =
√−2 ln a cos(2πb).323

If the maximum and minimum strength values, Y max
T and Y min

T , respectively are known, the324

mean strength value is µ = (Y min
T + Y max

T )/2 and the variance is given as325

3σ = µ − Y min
T = Y max

T − µ. The random normally distributed strength variable is: YT =326

1/2
(
Y max

T + Y min
T

)
+ 1/6

(
Y max

T − Y min
T

)
X.327

3.2 Kinematics of crack growth328

The predictions of the onset and growth of transverse matrix cracks use a [02/904]s laminate,329

with the material properties shown in Tables 2 and 3. A typical value of GL+ for glass fibers is330

used in the simulations.331

[Table 2 about here.]332

[Table 3 about here.]333

Eight-node solid elements (Abaqus C3D8 elements) are used in the fully three-dimensional nu-334

merical models. The models use two elements through the thickness of each ply. The specimen335

modeled has all the nodes in one end clamped, whereas the other extremity is subjected to an336

uniform displacement.337

The process of crack propagation in a [0n/90m]s is qualitatively shown in the Figures 3 and338

4. The damage variable d2 and the principal strain are plotted at different stages of cracking339

process in Figure 3. As expected, damage initiates at the free edge of the laminate. When340

increasing the external load, the strain localizes and transverse matrix cracks develop. Steps341

3-5 shown in Figure 3 represent the evolution of the cracks towards the center of the laminate.342

The microcracks in the vicinity of through-the-thickness cracks unload elastically. The process343

of crack grow to the center of the laminate is shown in Figure 4. Due the confining effect of344

outer plies, the central region of the crack advances faster than the region in the vicinity of the345

adjoining plies.346

[Fig. 3 about here.]347

[Fig. 4 about here.]348
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The predictions are consistent with experimental observations [60]-[47] that show that matrix349

cracks in multiaxial laminates with central 90◦ plies originate at the free edge and propagate350

through the specimen width.351

When [90n/0m]s laminates are tested in tension, the matrix cracks appear in the outer plies352

in an antisymmetrical distribution [48]. Figure 5 shows that antisymmetrical distribution of353

cracks is correctly captured by the model.354

[Fig. 5 about here.]355

Figure 6 represents the cracking process at different loading stages. The presence of one crack356

in the outer ply causes the loss of symmetry of the laminate, and the neutral line moves away357

from the crack. Therefore the laminate bends in the vicinity of the crack. The strain field in358

the location where a crack develops is shown in Figure 6.359

[Fig. 6 about here.]360

The previous results show that the proposed damage model is able to qualitatively represent361

the process of matrix cracking. This is due the ability of the finite element model to describe362

the kinematics of cracking process with a reasonable accuracy.363

3.3 Effects of transverse cracks on the laminate stiffness364

Varna et al. [49]-[51] presented the response of unnotched [±θ/904]s (θ = 0◦, 15◦, 30◦, 40◦)365

glass/epoxy laminates loaded in tension. The reduction of the laminate Youngs modulus (Ex)366

and Poisson ratio (νxy) were reported as a function of the laminate strain (εxx), where the367

direction x coincides with θ = 0◦. The material properties are obtained from [49]-[51] and368

summarized in the Tables 2 and 3.369

To simulate the thermal residual strains produced due the curing process, a temperature change370

of ∆T = −105 ◦C is applied. The ply thickness is t = 0.144mm. The other parameters required371

by the model are HT− = 0.4, XPO = 600MPa, GE
L = GL

L = 30N/mm, and A±
L = 0.372

The finite element model has a length of 8mm and, taking advantage of the symmetry, only373

the one-half of the laminate thickness is modeled. The mesh consists of C3D8 elements with374

a characteristic length of 0.072mm. To reduce the CPU time the specimen width is modeled375

with only one row of finite elements. Multi point constraints are introduced in the model as376

proposed in [65], to represent a state of generalized plane strain. A first thermal step is applied377

to represent the curing process. A prescribed displacement is applied to one end of the specimen,378

while the opposite end is clamped.379

No transverse damage are considered in the outer plies when θ 6= 90◦ plies are modeled. In380

these laminates, matrix cracks develop in the direction described by the ply orientation, and381

the boundary conditions used in the the model are no longer valid.382

The maximum transverse strength used is Y max
T = 200MPa. Therefore, the mean strength is383

125MPa and the standard variation is 25MPa. The strength value SL and YC are also ran-384

domized with a mean value of 180MPa and 295MPa, respectively. The standard deviation is385
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of 36MPa and 59MPa, respectively. The determination of the random strength properties was386

based on the [02/904]s laminate, and was keep constant in the other models. The influence of the387

random properties on the crack pattern is small. The statistical distribution mainly influences388

the onset of damage.389

It should be noted that the response of the material is quite sensitive to the finite element length.390

The sensitivity to the finite element length is unrelated to the common problem computing the391

energy dissipation as a function of the element length; this problem is solved by virtue of392

equation 16. The mesh dependency observed is due to the relation between the element size393

and the statistical distribution used. The solution of this problem is outside the scope of this394

work.395

For the [02/904]s laminate, the predicted failure strain is εu
xx = 0.022mm/mm and the collapse396

of the laminate occurs when fibre fracture develops in the the outer 0◦ plies. The predicted value397

is smaller than the one obtained using classical laminate theory, which is εu
xx = 0.023mm/mm.398

This fact is due the stress concentration that the matrix cracks cause in the outer plies, which in399

turn leads to laminate failure. The mean stress-strain response up to laminate failure is shown400

in Figure 7.401

[Fig. 7 about here.]402

Figures 8 to 11 show the internal variable rT and the transverse damage variable dT+ at a mean403

strain εxx = 0.01 mm/mm. The pattern of the internal variable clearly shows the localization of404

the deformations, which represent transverse cracks. The predicted distribution of the damage405

variable indicates that delamination develops at the tip of the transverse matrix crack.406

At the mean strain of εxx = 0.01mm/mm, the [02/904]s laminate shows three cracks, cor-407

responding to a crack density of 0.375 cracks/mm. The predicted crack density of the other408

laminates is 0.25 cracks/mm. These values are in reasonable agreement with the values reported409

by Varna [49], which are 0.34 cracks/mm for the [02/904]s laminate, 0.28 cracks/mm for the410

[±15/904]s laminate, 0.24 cracks/mm for the [±30/904]s laminate, and 0.15 cracks/mm for the411

[±40/904]s laminate.412

[Fig. 8 about here.]413

[Fig. 9 about here.]414

[Fig. 10 about here.]415

[Fig. 11 about here.]416

Figure 12 shows the longitudinal and transverse tension damage variable at the maximum load417

and after laminate failure. It is possible to observe that laminate failure is due to fiber tensile418

fracture of the adjoining plies, which in turn is triggered by the transverse matrix cracks that419

develop in the inner 90◦ layer.420

[Fig. 12 about here.]421

The reduction in the laminate’s Young modulus and Poisson ratio are shown in Figures 13 to 16.422

The Young modulus is calculated using the predicted load, P , the predicted end-displacement,423

δ, the specimen’s cross-section area, A, and length, L, as Ex = PL
Aδ

. It is observed that the crack424
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grows in the transverse direction until reach a critical length is reached; afterwards, the crack425

grows unstably with an associated amount of spare energy that produce the oscillations that426

are visible in the response. The numerical results are in good agreement with the experimental427

results reported by Varna et al. [49]-[51].428

[Fig. 13 about here.]429

[Fig. 14 about here.]430

[Fig. 15 about here.]431

[Fig. 16 about here.]432

3.4 Simulation of delamination433

The model is further validated by simulating an unidirectional specimen with a cut across the434

width of one central ply. When loaded in tension, such type of specimen promotes delamination435

growth in mode II [66] before the outer plies fail by fiber tensile fracture.436

The specimen under investigation was tested at the German Aerospace Centre (DLR) [67],437

and it consists of a 977-2 HTS [0◦7] CFRP laminate where the central ply was cut across the438

entire width of the specimen. The relevant material properties are shown in Tables 4 and 5.439

The nominal ply thickness is 0.25mm.440

[Table 4 about here.]441

[Table 5 about here.]442

Five specimens were tested and the mean value of the remote stress at delamination propa-443

gation, defined as the ratio between the load and the cross section area of the specimen, is444

1753MPa.445

The modeling strategy used here consists in imposing generalized plane strain conditions to446

Abaqus C3D8 8-node continuum elements by applying the kinematic relations proposed in447

[65]. The nodes at one end of the specimen are clamped and a displacement in the longitu-448

dinal direction is applied to the nodes at the other end. In addition, symmetry along the 1-2449

(longitudinal-transverse) midplane of the specimen is imposed. The ply cut was simulated by450

a line of elements with all the damage variables set to one. The mesh of the specimen under451

investigation is shown in Figure 17.452

[Fig. 17 about here.]453

Figure 18 shows the predicted relation between the end displacement of the specimen and the454

remote stress. The propagation of delamination corresponds to the horizontal plateau predicted455

by the model.456

[Fig. 18 about here.]457

Figures 19 and 20 show the the sequence of the failure mechanisms that occur in the specimen.458
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[Fig. 19 about here.]459

[Fig. 20 about here.]460

It is observed that the ply cut triggers a delamination between the central ply and the adjoining461

plies, that propagates in mode II along the length of the specimen. The specimen is able to462

sustain increasing loads until it completely fails as a result of the fiber fracture in the adjoining463

plies. This sequence of events was also observed in the experiments. In addition, the predicted464

remote stress at delamination propagation, 1782.4MPa, correlates well with the mean value465

measured in the experiments, 1753MPa.466

4 Conclusions467

A fully three-dimensional continuum damage model able to predict the different failure mech-468

anisms that may occur in laminated composites was proposed. The constitutive model is for-469

mulated in the formalism of the thermodynamics of irreversible processes and its numerical470

implementation ensures a mesh-independent prediction of energy dissipation by using the crack471

band model.472

The preliminary validation examples indicate that the model is able to capture the kinematics of473

the propagation of transverse matrix cracks for quasi-isotropic laminates with general locations474

of the 90◦ plies. The comparison between the model predictions and published experimental475

data show that the model is able to accurately predict the relation between the applied strain476

and the residual stiffness of quasi-isotropic laminates, final failure of the laminates, as well as477

the effect of the stiffness of the adjoining sublaminates on the density of transverse matrix478

cracks. In addition, the model is able to represent at the constitutive level both delamination479

and transverse matrix cracks as well as the interaction between these two failure mechanisms480

that occurs at in glass-epoxy quasi-isotropic laminates at high applied strains.481

Based on the results of the simulation of a CFRP specimen with a central cut ply it is concluded482

that the model accurately represents delamination onset and propagation in mode II, and the483

final fracture of the laminate as a result of fiber fracture. It should be emphasized that this484

sequence of events is predicted without recurring to special purpose cohesive elements, but485

using an appropriate constitutive model for the composite ply.486

The future research of the authors will include a further validation of the model presented in this487

paper for loading scenarios that trigger compression and shear-dominated failure mechanisms.488
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[58] Bažant ZP, Pang S-D. Activation Energy Based Extreme Value Statistics and Size Effect in Brittle
and Quasibrittle Fracture. Journal of the Mechanics and Physics of Solids. 2007;55:91-131.

[59] Box GEP, Muller ME. A note on the generation of random normal deviates. Annals Math. Stat,
1958;29:610-611

[60] Garrett KW, Bailey JE. Multiple Transverse Fracture in 90o Cross-Ply Laminates of a Glass
Fibre-Reinforced Polyester. J. Mat. Sci. 1977;12:157-168.

[61] Garrett KW, Bailey JE. The Effect of Resin Failure Strain on the Tensile Properties of Glass
Fiber-Reinforced Cross-Ply Laminates. J. Mat. Sci. 1977;12:2189-2194.

[62] Parvizi A, Garrett KW, Bailey JE. Constrained Cracking in Glass Fiber-Reinforced Epoxy Cross-
Ply Laminates. J. Mat. Sci. 1978;13:195-201.

[63] Bader MG, Bailey JE, Curtis PT, Parvizi A. The Mechanisms of Initiation and Development of
Damage in Multi-Axial Fibre-Reinforced Plastics Laminates. Proc. 3rd Int’l Conf. on Mechanical
Behavior of Materials 1979;3:227-239.

[64] Bailey JE, Curtis PT, Parvizi A. On the Transverse Cracking and Longitudinal Splitting Behavior
of Glass and Carbon Fibre Epoxy Cross-Ply Laminates and the Effect of Poisson and Thermally
Generated Strains. Proc. R. Soc. Lond. A 1979;366:599-623.
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Fig. 3. Propagation of transverse matrix cracks.
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Fig. 4. Propagation of transverse crack.
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Fig. 5. Distribution of transverse matrix cracks in a [90/0]s laminate. Deformed scale: 30x.
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Fig. 14. Ex and νxy as functions of the applied strain for a [±15/904]s laminate. Experimental results
from Varna et al. [49]-[51].
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Fig. 15. Ex and νxy as functions of the applied strain for a [±30/904]s laminate. Experimental results
from Varna et al. [49]-[51].
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Fig. 16. Ex and νxy as functions of the applied strain for a [±40/904]s laminate. Experimental results
from Varna et al. [49]-[51].
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Fig. 17. Mesh of the unidirectional specimen.
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Fig. 18. Predicted relation between the remote stress and the end displacement.
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Fig. 19. Damage variable d6 at 1782.4MPa. Deformed scale: 2x.
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Fig. 20. Damage variable d1 at peak load, 1829MPa. Deformed scale: 2x.
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Table 1
List of symbols.

εij Strain in the material coordinate system.

ςij Nominal stress in the material coordinate system.

εij Principal strain in the transversely isotropic plane.

σij Principal nominal stress in the transversely isotropic plane.

σ̃ij Principal effective stress in the transversely isotropic plane.

T(θ) Transformation matrix between εij and εij .

ψ Complementary free energy per unit volume.

∆T Difference in temperature.

∆M Difference in moisture content.

α Coefficients of thermal expansion.

β Coefficients of hygroscopic expansion.

dI Active damage variables (I = 1, 2, 3, 6).

dM Damage variables (M = L+, L−, T+, T−, S).

E1, E2, G12, ν12, ν23 Ply engineering elastic constants.

Ex, νxy Laminate engineering elastic constants.

H Compliance tensor.

YI Thermodynamic forces associated to active damage variable.

Ξ Rate of dissipation.

FN Damage activation functions (N = L+, L−, T ).

φN Loading functions (N = L+, L−, T ).

rN Elastic domain thresholds (N = L+, L−, T ).

XT , XC , YT , YC , SL Uniaxial strengths.

` Characteristic element size.

GM Fracture toughness (M = L+, L−, T+, S).

gM Dissipated energy per unit volume (M = L+, L−, T+, S).

HT− Transverse compression damage parameter.

XPO Pull-out strength.

GE
L+ Pull-out fracture energy.

A±L Longitudinal tension-compression coupling parameter.
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Table 2
Elastic properties of glass-epoxy [49]-[51].

E1 (MPa) E2 (MPa) G12 (MPa) ν12 ν23 α11 (1/0C) α22 (1/0C)

44730 12760 5800 0.28 0.42 8.6×10−6 22.1×10−6
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Table 3
Strength and fracture energy of glass-epoxy.

XT (MPa) YT (MPa) SL (MPa) GT+ (N/mm) GS (N/mm) GL+ (N/mm)

1060 50 72 0.4 0.8 60
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Table 4
Elastic properties of 977-2 HTS.

E1 (MPa) E2 (MPa) G12 (MPa) ν12 ν23

144000 7500 5030 0.29 0.50
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Table 5
Strengths and fracture toughness of 977-2 HTS.

XT (MPa) YT (MPa) SL (MPa) GS (N/mm)

2290 47 67 1.55
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